There are two primary types of photoreceptor cells in the human eye: cone cells and rod cells that enable color vision and night vision, respectively. Herein, inspired by the function of human visual cells, we develop a high-resolution perovskite-based color camera using a set of narrowband red, green, blue, and broadband white perovskite photodetectors as imaging sensors. The narrowband red, green, and blue perovskite photodetectors with color perceptions mimic long-, medium-, and short-wavelength cones cells to achieve color imaging ability. Also, the broadband white perovskite photodetector with better detectivity mimics rod cells to improve weak-light imaging ability. Our perovskite-based camera, combined with predesigned pattern illumination and image reconstruction technology, is demonstrated with high-resolution color images (up to 256 × 256 pixels) in diffuse mode. This is far beyond previously reported advanced perovskite array image sensors that only work in monochrome transmission mode. This work shows a new approach to bio-inspired cameras and their great potential to strongly mimic the ability of the natural eye.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929324 | PMC |
http://dx.doi.org/10.1038/s41377-023-01072-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!