Visual detection of mercury ions and glutathione is of great significance to public health and environmental issues. Herein, we developed a fluorescent sensor (l-Cys/CuNCs@ESM) based on the eggshell membrane (ESM) and red-emitting copper nanoclusters (CuNCs) by the in situ strategy via l-cysteine (l-Cys) as the reducing and protective agent for mercury ions and glutathione sensing visually. The as-prepared fluorescent product had good stability, portability, large Stokes shift (250 nm), and long fluorescence lifetime (7.3 μs). Notably, the l-Cys/CuNCs@ESM exhibited a specific fluorescence quenching response toward Hg. Moreover, the interaction between glutathione (GSH) and Hg could subsequently recover the fluorescence effectively. Inspired by this "on-off-on" switch, the l-Cys/CuNCs@ESM was applied as the dual-sensing system for visual detection of mercury ions and glutathione integrating with the portable smartphone. The limit of detection (LOD) of Hg is 1.1 μM for visualization and 0.52 μM for the fluorescence spectrometer. The corresponding LODs of GSH are 2.8 and 0.59 μM, respectively. This platform presents significant sensitivity, specificity, and stability, offering a promising potential for real-time/on-site sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.3c00031 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, Madanapalle Institute of Technology & Science, Kadiri Road, Angallu, Madanapalle, 517325, Annamayya District, Andhra Pradesh, India.
A new Rhodamine functionalised Schiff Base sensor 3',6'-bis(diethylamino)-2-((4-hydroxybenzylidene)amino)spiro[isoindoline-1,9'-xanthen]-3-one (SBRB1) was designed and synthesized. The recognition ability of sensor SBRB1 towards Hg was studied by using UV-Vis and fluorescence spectroscopy. The fluorescence results showed that the sensor SBRB1 has specific selectivity as well as sensitivity towards Hg among other competitive metal ions as the fluorescence intensity at 479 nm quenched only in the presence of Hg.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
Supramolecular Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka (NITK) Surathkal, Srinivasnagar, Mangalore, Karnataka 575 025, India.
A series of sensors, designated S3R1-S3R4, were designed and synthesized for the detection of PO ions and toxic metals, specifically Hg and Cu ions. The colorimetric detection of PO ions using these sensors exhibited a distinct visual color transition from yellow to purple in organo-aqueous media. The intrinsic cavity-like structure in the thiosemicarbazide-based derivative S3R4 significantly enhances the binding affinity for Hg and Cu ions in organic media.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China. Electronic address:
The Mercury (II) ion (Hg²⁺) is a toxic heavy metal that threatens biological systems by inducing oxidative stress and disrupting the redox balance. Biothiols such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) are critical in maintaining redox homeostasis and are implicated in numerous physiological and pathological processes. Understanding the complex interactions between Hg²⁺ and biothiols requires molecular tools capable of simultaneous detection.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFLaser-induced fluorescence spectroscopy was used to detect mercury ions in aqueous solutions, in which CH-95 resin was used to chelate the ions to transform the liquid samples into solid ones. The experimental results showed that the fluorescence emission of the chelated solid-state samples excited by a low-power semiconductor laser at the wavelength of 447 nm was significantly enhanced due to the chelating reaction. The fluorescence intensity was proportional to the concentration of mercury ions with a linear correlation coefficient of = 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!