In recent years, 2,6-dichloro-1,4-benzoquinone (DCBQ) has become an emerging water disinfection by-product and widely distributed in disinfected water. Although kidney is a potential target of DCBQ, a systematic study of the in vivo nephrotoxicity of DCBQ is rare. In this study, a 28-day oral toxicity test was used to assess the nephrotoxic effects of DCBQ on mice. And the potential mechanisms of nephrotoxicity induced by DCBQ were explored through inflammation, oxidative stress, apoptosis and gut microbiota. The results showed that the kidney indexes of mice were not altered in DCBQ-exposed group in comparison with the control group. The histopathological investigation revealed that DCBQ caused swollen of renal tube, destruction of the renal structure, and infiltration of inflammatory cell in kidney. DCBQ has induced oxidative damage in kidney, as the observation of the increase of the renal superoxide dismutase (SOD) and catalase (CAT) activity. Also, DCBQ has triggered the inflammatory response in kidney through the increased expression of IL-1β, NF-κB and iNOS. Moreover, DCBQ has activated the apoptosis pathway, as indicated by the increased mRNA expression of Caspase-3 and Caspase-9. We eventually found an association between gut microbiota and nephrotoxic variables, demonstrating the importance of gut-kidney axis in DCBQ toxicity. Our results suggested that exposure to DCBQ in disinfected water might be a risk factor for kidney and provided novel insights into the underlying mechanisms of DCBQ-induced kidney injury, contributing to better interpretation of the health impact of the environmentally emerging contaminant DCBQ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tox.2023.153459 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China. Electronic address:
2,6-Dichloro-1,4-benzoquinone (2,6-DCBQ) is a disinfection by-product (DBP) formed during the disinfection of drinking water. Due to its frequent detection and high concentrations, it has garnered significant attention. However, the effects of 2,6-DCBQ on oocyte meiosis remain poorly understood.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China. Electronic address:
2,6-Dibromo-1,4-benzoquinone (2,6-DBBQ) and 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), two emerging halobenzoquinones (HBQs), have the highest detection frequencies and levels in drinking water among all HBQs. They are more toxic than the regulated disinfection byproducts. Quantitative structure toxicity relationship analysis predicted that HBQs are a class of potential bladder carcinogens.
View Article and Find Full Text PDFEcotoxicol Environ Saf
November 2024
State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China. Electronic address:
Halobenzoquinones (HBQs) are ubiquitous disinfection by-products (DBPs) in chlorinated drinking water with various health risks including reproductive toxicity, while the potential mechanisms are still unclear. Although green tea exhibits common detoxifying properties, its ability to mitigate the toxicity of HBQs still needs to be further deepened and explored. This study attempted to investigate the possible mechanism of the most common HBQ, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) induced reproductive toxicity and elucidate the protective effect of green tea using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches.
View Article and Find Full Text PDFPhytochemistry
October 2024
Department of Horticultural Sciences, University of Florida, Gainesville, FL, 32611, USA. Electronic address:
The unprenylated benzoquinones 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone), 2-chloro-1,4-benzoquinone (CBQ), 2,6-dimethyl-1,4-benzoquinone (DMBQ), 2,6-dichloro-1,4-benzoquinone (DCBQ), and 2,6-dimethoxy-1,4-benzoquinone (DMOBQ) were tested as putative antimetabolites of plastoquinone-9, a vital electron and proton carrier of oxygenic phototrophs. Duroquinone and CBQ were the most effective at inhibiting the growth of the cyanobacterium Synechocystis sp. PCC 6803 either in photomixotrophic or photoautotrophic conditions.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
Chloroxylenol is a worldwide commonly used disinfectant. The massive consumption and relatively high chemical stability of chloroxylenol have caused eco-toxicological threats in receiving waters. We noticed that chloroxylenol has a chemical structure similar to numerous halo-phenolic disinfection byproducts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!