Objectives: To gain insights into the technical feasibility of maternal spindle transfer (MST) applied in the context of repeated in vitro fertilization (IVF) failures for the treatment of idiopathic infertility.
Design: A prospective pilot study.
Setting: IVF center.
Patient(s): Twenty-five infertile couples with multiple previous unsuccessful IVF cycles (range, 3-11), no previous pregnancy, and no history of mitochondrial DNA (mtDNA) disease participated. The study focused on women <40 years, with previous IVF attempts characterized by a pattern of low fertilization rates and/or impaired embryo development. Couples with severe male-factor infertility were not eligible. Oocyte donors with previous successful IVF outcomes were matched with patients according to standard practice.
Intervention(s): We performed MST by transferring metaphase II spindles from the patients' oocytes into the previously enucleated donor oocytes, followed by intracytoplasmic sperm injection, in vitro embryo culture, blastocyst biopsy, and vitrification. Only euploid blastocysts were considered for embryo transfer.
Main Outcome Measure(s): Outcome measures included oocyte fertilization, blastocyst development, clinical pregnancy and live birth, incidence of mitochondrial carryover and potential mtDNA reversal, as well as general health of the children born.
Result(s): Twenty-eight MST cycles produced 6 children (19 embryo transfers, 7 clinical pregnancies). Pediatric follow-up of the children, performed at intervals from birth to 12-24 months of age, revealed their development to be unremarkable. DNA fingerprinting confirmed that the nuclear DNA of MST children was inherited from both parents, without any contribution from the oocyte donor. For 5 of the children, mtDNA was derived almost exclusively (>99%) from the donor. However, 1 child, who had similarly low mtDNA carryover (0.8%) at the blastocyst stage, showed an increase in the maternal mtDNA haplotype, accounting for 30% to 60% of the total at birth.
Conclusion(s): This pilot study provides the first insights into the feasibility of applying MST for patients with idiopathic infertility and repeated IVF failures. Reconstructed oocytes produced embryos capable of implanting, developing to term and producing apparently healthy newborns/children. However, claims concerning the efficacy of MST with respect to infertility treatment would be premature considering the limitations of this study. Importantly, mtDNA reversal was detected in one child born after MST, a finding with possible implications for mitochondrial replacement therapies.
Clinical Trial Registration Number: Pilot trial registry number, ISRCTN11455145. The date of registration: 20/02/2018. The date of enrolment of the first patients: 18/03/2018.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fertnstert.2023.02.008 | DOI Listing |
Mol Biol Rep
January 2025
Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation.
View Article and Find Full Text PDFZygote
January 2025
University Farm, Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-4415, Japan.
In cattle, maternal metabolic health has been suggested to influence oocyte and embryo quality. Here, we examined whether maternal liver abnormalities affected oocyte maturation by screening meiotic maturation, spindle morphology, actin filaments, and lysosomes. In oocytes from the abnormal liver group, the maturation rate (80.
View Article and Find Full Text PDFAging Cell
January 2025
State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
With advancing age, significant changes occur in the female reproductive system, the most notable of which is the decline in oocyte quality, a key factor affecting female fertility. However, the mechanisms underlying oocyte aging remain poorly understood. In this study, we obtained oocytes from aged and young female mice and performed single-cell transcriptome sequencing, comparing our findings with existing proteomic analyses.
View Article and Find Full Text PDFAndrology
December 2024
Department of Cell Biology and Genetics, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China.
Background: The establishment of kinetochore-microtubule attachment is essential for error-free chromosome alignment and segregation during cell division. Defects in chromosome alignment result in chromosome instability, birth defects, and infertility. Kinesin-7 CENP-E mediates kinetochore-microtubule capture, chromosome alignment, and spindle assembly checkpoint in somatic cells, however, mechanisms of CENP-E in germ cells remain poorly understood.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, People's Republic of China. Electronic address:
The G protein-coupled estrogen receptor (GPER) plays a crucial role in various biological processes, but its regulation of oocyte meiosis remains unclear. In this study, we generated a Gper1 knockout in growing oocytes using Zp3-Cre, revealing that GPER is essential for oocyte maturation and embryo development. RNA-seq analysis indicated that GPER deficiency significantly altered the oocyte transcriptome and disrupted mRNA translation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!