The presence of per- and poly-fluoroalkyl substances (PFASs) in water is of global concern due to their high stability and toxicity even at very low concentrations. There are several technologies for the remediation of PFASs, but most of them are inadequate either due to limited effectiveness, high cost, or production of a large amount of sludge. Electrochemical oxidation (EO) technology shows great potential for large-scale application in the degradation of PFASs due to its simple procedure, low loading of chemicals, and least amount of waste. Here, we have reviewed the recent progress in EO methods for PFAS degradation, focusing on the last 10 years, to explore an efficient, cost-effective, and environmentally benign remediation technology. The effects of important parameters (e.g., anode material, current density, solution pH, electrolyte, plate distance, and electrical connector type) are summarized and evaluated. Also, the energy consumption, the consequence of different PFASs functional groups, and water matrices are discussed to provide an insight that is pivotal for developing new EO materials and technologies. The proposed degradation pathways of shorter-chain PFAS by-products during EO of PFAS are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.138109 | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States.
Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA).
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, DC, USA.
sp. CBR-F is a bacterial species isolated from a water treatment plant targeting for per- and poly-fluoroalkyl substances, a difficult-to-degrade family of anthropogenic compounds. Here, we report a complete genome for sp.
View Article and Find Full Text PDFToxics
December 2024
Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria.
The contamination of ground and surface waters with per- and polyfluoroalkyl substances (PFASs) is of major concern due to their potential adverse effects on human health. The carbon-fluorine bond makes these compounds extremely stable and hardly degradable by natural processes. Therefore, methods for PFAS removal from water are desperately needed.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Meteorology and Water Management, National Research Institute, Waszyngtona 42, 81-342 Gdynia, Poland.
In this study, the results of a comprehensive assessment of the variability in the occurrence of ten perfluorinated compounds (PFAS) in fish tissues originating from 2014 to 2019 from six fisheries in the Baltic Sea are presented. A total of 360 fish samples of three species (perch, herring and flatfish) were analysed. For the determination of PFAS, both linear and branched stereoisomers, LC-ESI-MS/MS technique preceded by simultaneous SPE isolation was validated and applied.
View Article and Find Full Text PDFObjective: We previously found that per- and polyfluoroalkyl substances (PFAS) mixture exposure is inversely associated with SARS-CoV-2 IgG (IgG) antibody levels in pregnant individuals. Here, we aim to identify metabolites mediating this relationship to elucidate the underlying biological pathways.
Methods: We included 59 pregnant participants from a US-based pregnancy cohort.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!