Simulated patterns of mitochondrial diversity are consistent with partial population turnover in Bronze Age Central Europe.

Am J Biol Anthropol

Laboratory of Anthropology, Genetics and Peopling History, Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.

Published: January 2022

Objectives: The analysis of ancient mitochondrial DNA from osteological remains has challenged previous conclusions drawn from the analysis of mitochondrial DNA from present populations, notably by revealing an absence of genetic continuity between the Neolithic and modern populations in Central Europe. Our study investigates how to reconcile these contradictions at the mitochondrial level using a modeling approach.

Materials And Methods: We used a spatially explicit computational framework to simulate ancient and modern DNA sequences under various evolutionary scenarios of post Neolithic demographic events and compared the genetic diversity of the simulated and observed mitochondrial sequences. We investigated which-if any-scenarios were able to reproduce statistics of genetic diversity similar to those observed, with a focus on the haplogroup N1a, associated with the spread of early Neolithic farmers.

Results: Demographic fluctuations during the Neolithic transition or subsequent demographic collapses after this period, that is, due to epidemics such as plague, are not sufficient to explain the signal of population discontinuity detected on the mitochondrial DNA in Central Europe. Only a scenario involving a substantial genetic input due to the arrival of migrants after the Neolithic transition, possibly during the Bronze Age, is compatible with observed patterns of genetic diversity.

Discussion: Our results corroborate paleogenomic studies, since out of the alternative hypotheses tested, the best one that was able to recover observed patterns of mitochondrial diversity in modern and ancient Central European populations was one were immigration of populations from the Pontic steppes during the Bronze Age was explicitly simulated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9298224PMC
http://dx.doi.org/10.1002/ajpa.24431DOI Listing

Publication Analysis

Top Keywords

bronze age
12
central europe
12
mitochondrial dna
12
patterns mitochondrial
8
mitochondrial diversity
8
genetic diversity
8
neolithic transition
8
observed patterns
8
mitochondrial
7
genetic
5

Similar Publications

Origin and Genealogy of Rare mtDNA Haplotypes Detected in the Serbian Population.

Genes (Basel)

January 2025

Group for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia.

: The Balkan Peninsula has served as an important migration corridor between Asia Minor and Europe throughout humankind's history and a refugium during the Last Glacial Maximum. Past migrations such as the Neolithic expansion, Bronze Age migrations, and the settlement of Slavic tribes in the Early Middle Ages, are well known for their impact on shaping the genetic pool of contemporary Balkan populations. They have contributed to the high genetic diversity of the region, especially in mitochondrial DNA (mtDNA) lineages.

View Article and Find Full Text PDF

Roman writers found the relative empowerment of Celtic women remarkable. In southern Britain, the Late Iron Age Durotriges tribe often buried women with substantial grave goods. Here we analyse 57 ancient genomes from Durotrigian burial sites and find an extended kin group centred around a single maternal lineage, with unrelated (presumably inward migrating) burials being predominantly male.

View Article and Find Full Text PDF

Unlabelled: The R package CropPro is an open-access resource to classify archaeobotanical samples as products and by-products of different stages of the crop processing sequence for large-seeded cereal and pulse crops in south west Asia, Europe and other Mediterranean regions. It builds on ethnographic research and analysis conducted by Jones (Plants and ancient man: studies in palaeoethnobotany. Balkema, Rotterdam, pp 43-61, 1984), (J Archaeol Sci 14:311-323, 1987), (Circaea 6:91-96, 1990) and a modified method by Charles (Environ Archaeol 1:111-122, 1998).

View Article and Find Full Text PDF

North Pontic crossroads: Mobility in Ukraine from the Bronze Age to the early modern period.

Sci Adv

January 2025

UCL Genetics Institute, Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK.

The North Pontic region, which encompasses present-day Ukraine, was a crossroads of migration, connecting the vast Eurasian Steppe with Central Europe. We generated shotgun-sequenced genomic data for 91 individuals dating from around 7000 BCE to 1800 CE to study migration and mobility history in the region, with a particular focus on historically attested migrating groups during the Iron Age and the medieval period. We infer a high degree of temporal heterogeneity in ancestry, with fluctuating genetic affinities to different present-day Eurasian groups.

View Article and Find Full Text PDF

This study investigates the Y-chromosome genetic diversity of the Turkmen population in Turkmenistan, analyzing 23 Y-STR loci for the first time in a sample of 100 individuals. Combined with comparative data from Turkmen populations in Afghanistan, Iran, Iraq, Russia, and Uzbekistan, this analysis offers insights into the genetic structure and relationships among Turkmen populations across regions across Central Asia and the Near East. High haplotype diversity in the Turkmen of Turkmenistan is shaped by founder effects (lineage expansions) from distinct haplogroups, with haplogroups Q and R1a predominating.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!