A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes.

Cell Rep Med

State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China. Electronic address:

Published: February 2023

The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975321PMC
http://dx.doi.org/10.1016/j.xcrm.2023.100944DOI Listing

Publication Analysis

Top Keywords

machine-learning algorithm
8
algorithm integrating
8
integrating baseline
8
serum proteomic
8
proteomic signatures
8
exercise training
8
exercise
5
baseline serum
4
signatures predicts
4
predicts exercise
4

Similar Publications

End-range movements are among the most demanding but least understood in the sport of tennis. Using male Hawk-Eye data from match-play during the 2021-2023 Australian Open tournaments, we evaluated the speed, deceleration, acceleration, and shot quality characteristics of these types of movement in men's Grand Slam tennis. Lateral end-range movements that incorporated a change of direction (CoD) were identified for analysis using k-means (end-range) and random forest (CoD) machine learning models.

View Article and Find Full Text PDF

The "no-show" problem in healthcare refers to the prevalent phenomenon where patients schedule appointments with healthcare providers but fail to attend them without prior cancellation or rescheduling. In addressing this issue, our study delves into a multivariate analysis over a five-year period involving 21,969 patients. Our study introduces a predictive model framework that offers a holistic approach to managing the no-show problem in healthcare, incorporating elements into the objective function that address not only the accurate prediction of no-shows but also the management of service capacity, overbooking, and idle resource allocation resulting from mispredictions.

View Article and Find Full Text PDF

Development of Predictive Model of Surgical Case Durations Using Machine Learning Approach.

J Med Syst

January 2025

Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.

Optimizing operating room (OR) utilization is critical for enhancing hospital management and operational efficiency. Accurate surgical case duration predictions are essential for achieving this optimization. Our study aimed to refine the accuracy of these predictions beyond traditional estimation methods by developing Random Forest models tailored to specific surgical departments.

View Article and Find Full Text PDF

Adverse effects of advanced age and poor initial neurological status on outcomes of patients with aneurysmal subarachnoid hemorrhage (SAH) have been documented. While a predictive model of the non-linear correlation between advanced age and clinical outcome has been reported, no previous model has been validated. Therefore, we created a prediction model of the non-linear correlation between advanced age and clinical outcome by machine learning and validated it using a separate cohort.

View Article and Find Full Text PDF

Machine learning prediction model for oral mucositis risk in head and neck radiotherapy: a preliminary study.

Support Care Cancer

January 2025

Oral Diagnosis Department, Faculdade de Odontolodia de Piracicaba, Universidade de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.

Purpose: Oral mucositis (OM) reflects a complex interplay of several risk factors. Machine learning (ML) is a promising frontier in science, capable of processing dense information. This study aims to assess the performance of ML in predicting OM risk in patients undergoing head and neck radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!