A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Near-infrared light-induced photoelectrochemical biosensor based on plasmon-enhanced upconversion nanocomposites for microRNA-155 detection with cascade amplifications. | LitMetric

Herein, a novel near-infrared (NIR) light-driven photoelectrochemical (PEC) biosensor based on NaYF:Yb, Er@BiMoO@Bi (NYF@BMO@Bi) nanocomposites was elaborately developed to achieve highly sensitive detection of microRNA-155 (miRNA-155). To realize signal enhancement, the coupled plasmonic bismuth (Bi) nanoparticles were constructed as an energy relay to facilitate the transfer of energy from NaYF:Yb, Er to BiMoO, ultimately enabling the efficient separation of electron-hole pairs of BiMoO under the irradiation of a 980 nm laser. For constructing biosensing system, the initial signal was firstly amplified after the addition of alkaline phosphatase (ALP) in conjunction with the biofunctionalized NYF@BMO@Bi nanocomposites, which could catalyze the conversion of ascorbic acid 2-phosphate into ascorbic acid, and then consumed the photoacoustic holes created on the surface of BiMoO for the enlarging photocurrent production. Upon addition of target miRNA-155, the cascade signal amplification process was triggered while the ALP-modified DNA sequence was replaced and then followed by the initiation of a simulated biocatalytic precipitation reaction to attenuate the photocurrent response. On account of the NIR-light-driven and cascade amplifications strategy, the as-constructed biosensor was successfully utilized for the accurate determination of miRNA-155 ranging from 1 fM to 0.1 μM with a detection limit of 0.32 fM. We believed that the proposed nanocomposites-based NIR-triggered PEC biosensor could provide a promising platform for effective monitoring other tumor biomarkers in clinical diagnostics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115145DOI Listing

Publication Analysis

Top Keywords

biosensor based
8
cascade amplifications
8
pec biosensor
8
nyf@bmo@bi nanocomposites
8
ascorbic acid
8
near-infrared light-induced
4
light-induced photoelectrochemical
4
biosensor
4
photoelectrochemical biosensor
4
based plasmon-enhanced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!