Diffusion-mediated assembly of octahedral PbS nanocrystals (NCs) in a confined antisolvent environment displays a primary burst nucleation and Ostwald ripening growth of rhombic bcc supercrystals, followed by a secondary seed-based nucleation and oriented attachment growth of triangle fcc supercrystals. As the diffusion proceeds from ethanol across a sharp interface into NC-suspended toluene, a burst nucleation of supercrystal seeds occurs, and such supercrystals are quickly developed into rhombic grains that have a bcc structure. At a critical size of 10 μm, an Ostwald ripening event appears to guide the supercrystal growth. Upon grain growth above 30 μm, the fcc supercrystals start a nucleation at two symmetrical tips of individual rhombic crystals. Such fcc supercrystals are developed with a triangle shape, and two triangles are combined with one bcc rhombus in-between to form a butterfly-like bowtie stacking structure. The fcc triangle wings grow larger at a reduction of bcc rhombus cores. As the bcc cores gradually fade, such butterfly-like bowtie crystals aggregate and undergo an oriented attachment process, leading to the formation of freestanding 3D triangle crystals that have a single fcc lattice. Analysis of experimental observations and defined diffusion parameters reveals that fast solvent diffusion and high-NC concentration promote the growth of rhombic bcc supercrystals, while slow solvent diffusion and low-NC concentration accelerate the development of triangle fcc supercrystals. Upon succeeding in designable growth of 3D fcc supercrystals, this study provides designing principles for controlled fabrication of supercrystals with desired superlattices for additional engineering and applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c11120DOI Listing

Publication Analysis

Top Keywords

fcc supercrystals
20
supercrystals
10
fcc
8
growth fcc
8
burst nucleation
8
ostwald ripening
8
growth rhombic
8
rhombic bcc
8
bcc supercrystals
8
oriented attachment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!