Unlabelled: Despite effective new therapies, adaptive resistance remains the main obstacle in acute myelogenous leukemia (AML) therapy. Autophagy induction is a key mechanism for adaptive resistance. Leukemic blasts at diagnosis express higher levels of the apical autophagy kinase ULK1 compared with normal hematopoietic cells. Exposure to chemotherapy and targeted agents upregulate ULK1, hence we hypothesize that developing ULK1 inhibitors may present the unique opportunity for clinical translation of autophagy inhibition. Accordingly, we demonstrate that ULK1 inhibition, by genetic and pharmacologic means, suppresses treatment-induced autophagy, overcomes adaptive drug-resistance, and synergizes with chemotherapy and emerging antileukemia agents like venetoclax (ABT-199). The study next aims at exploring the underlying mechanisms. Mechanistically, ULK1 inhibition downregulates MCL1 antiapoptotic gene, impairs mitochondrial function and downregulates components of the CD44-xCT system, resulting in impaired reactive oxygen species (ROS) mitigation, DNA damage, and apoptosis. For further validation, several mouse models of AML were generated. In these mouse models, ULK1 deficiency impaired leukemic cell homing and engraftment, delayed disease progression, and improved survival. Therefore, in the study, we validated our hypothesis and identified ULK1 as an important mediator of adaptive resistance to therapy and an ideal candidate for combination therapy in AML. Therefore, we propose ULK1 inhibition as a therapeutically relevant treatment option to overcome adaptive drug-resistance in AML.
Implications: ULK1 drives a cell-intrinsic adaptive resistance in AML and targeting ULK1-mediated autophagy can synergize with existing and emerging AML therapies to overcome drug-resistance and induce apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042682 | PMC |
http://dx.doi.org/10.1158/1541-7786.MCR-22-0343 | DOI Listing |
Front Vet Sci
December 2024
College of Animal Science and Technology, Ningxia University, Yinchuan, China.
Dorper sheep is popular among farming enterprises with strong adaptability, disease resistance, and roughage tolerance, and an unique characteristic of natural shedding of wool. In a large number of observations on experimental sheep farms, it was found that the wool of some sheep still had not shed after May, thus manual shearing was required. Therefore, understanding the molecular mechanisms of normal hair follicles (HFs) development is crucial to revealing the improvement of sheep wool-related traits and mammalian skin-related traits.
View Article and Find Full Text PDFCancer Sci
December 2024
Division of Molecular Therapeutics, Aichi Cancer Center Research Institute, Nagoya, Japan.
KRAS was long deemed undruggable until the discovery of the switch-II pocket facilitated the development of specific KRAS inhibitors. Despite their introduction into clinical practice, resistance mechanisms can limit their effectiveness. Initially, tumors rely on mutant KRAS, but as they progress, they may shift to alternative pathways, resulting in intrinsic resistance.
View Article and Find Full Text PDFTrop Med Health
December 2024
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK.
Egypt's recent malaria-free certification by the World Health Organization (WHO) marks a significant achievement in public health, underscoring the effectiveness of sustained national efforts in disease eradication. This milestone, achieved after nearly a century of strategic intervention, highlights the importance of integrated public health programmes and cross-sector collaboration. Egypt's journey involved early initiatives to reduce human-mosquito contact, the establishment of malaria control stations, and comprehensive outbreak management strategies.
View Article and Find Full Text PDFBMC Genomics
December 2024
Department of Entomology, University of Maryland, College Park, MD, 20742, USA.
Strong and shifting selective pressures of the Anthropocene are rapidly shaping phenomes and genomes of organisms worldwide. Crops expressing pesticidal proteins from Bacillus thuringiensis (Bt) represent one major selective force on insect genomes. Here we characterize a rapid response to selection by Bt crops in a major crop pest, Helicoverpa zea.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
Background: Rice is the main food crop for much of the population in China. Therefore, selecting and breeding new disease resistance and drought tolerance in rice is essential to ensure national food security. The utilization of heterosis has significantly enhanced rice productivity, yet many of the molecular mechanisms underlying this phenomenon remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!