Animal development proceeds in the presence of intimate microbial associations, but the extent to which different host cells across the body respond to resident microbes remains to be fully explored. Using the vertebrate model organism, the larval zebrafish, we assessed transcriptional responses to the microbiota across the entire body at single-cell resolution. We find that cell types across the body, not limited to tissues at host-microbe interfaces, respond to the microbiota. Responses are cell-type-specific, but across many tissues the microbiota enhances cell proliferation, increases metabolism, and stimulates a diversity of cellular activities, revealing roles for the microbiota in promoting developmental plasticity. This work provides a resource for exploring transcriptional responses to the microbiota across all cell types of the vertebrate body and generating new hypotheses about the interactions between vertebrate hosts and their microbiota.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10423310 | PMC |
http://dx.doi.org/10.1016/j.celrep.2023.112095 | DOI Listing |
J Dev Orig Health Dis
January 2025
Yale School of Medicine, Yale Child Study Center, New Haven, CT, USA.
Early gut microbiome development may impact brain and behavioral development. Using a nonhuman primate model (), we investigated the association between social environments and the gut microbiome on infant neurodevelopment and cognitive function. Infant rhesus monkeys ( = 33) were either mother-peer-reared (MPR) or nursery-reared (NR).
View Article and Find Full Text PDFInt J Med Sci
January 2025
Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University. Dongguan, Guangdong 523808, China.
Allergic diseases are a group of chronic inflammatory disorders driven by abnormal immune responses. Dendritic cells (DCs) play a pivotal role in the initiation and progression of allergic diseases by modulating T cell responses. Extensive progress has been made in characterizing crucial roles of metabolic reprogramming in the regulation of immune cell functions.
View Article and Find Full Text PDFFront Microbiol
December 2024
The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.
View Article and Find Full Text PDFJ Dev Orig Health Dis
January 2025
Danone Research & Innovation Center, Utrecht, The Netherlands.
The nutritional environment during fetal and early postnatal life has a long-term impact on growth, development, and metabolic health of the offspring, a process termed "nutritional programming." Rodent models studying programming effects of nutritional interventions use either purified or grain-based rodent diets as background diets. However, the impact of these diets on phenotypic outcomes in these models has not been comprehensively investigated.
View Article and Find Full Text PDFBehav Brain Funct
January 2025
Wenzhou Key Laboratory of Sanitary Microbiology; School of Laboratory Medicine and Life Sciences; Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
Alzheimer's disease (AD) is a prevalent and progressive neurodegenerative disorder that is the leading cause of dementia. The underlying mechanisms of AD have not yet been completely explored. Neuroinflammation, an inflammatory response mediated by certain mediators, has been exhibited to play a crucial role in the pathogenesis of AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!