The NIN-LIKE PROTEIN 7 transcription factor modulates auxin pathways to regulate root cap development in Arabidopsis.

J Exp Bot

Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.

Published: May 2023

The root cap is a small tissue located at the tip of the root with critical functions for root growth. Present in nearly all vascular plants, the root cap protects the root meristem, influences soil penetration, and perceives and transmits environmental signals that are critical for root branching patterns. To perform these functions, the root cap must remain relatively stable in size and must integrate endogenous developmental pathways with environmental signals, yet the mechanism is not clear. We previously showed that low pH conditions altered root cap development, and these changes are mediated by the NIN LIKE PROTEIN 7 (NLP7) transcription factor, a master regulator of nitrate signaling. Here we show that in Arabidopsis NLP7 integrates nitrate signaling with auxin pathways to regulate root cap development. We found that low nitrate conditions promote aberrant release of root cap cells. Nitrate deficiency impacts auxin pathways in the last layer of the root cap, and this is mediated in part by NLP7. Mutations in NLP7 abolish the auxin minimum in the last layer of the root cap and alter root cap expression of the auxin carriers PIN-LIKES 3 (PILS3) and PIN-FORMED 7 (PIN7) as well as transcription factors that regulate PIN expression. Together, our data reveal NLP7 as a link between endogenous auxin pathways and nitrate signaling in the root cap.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jxb/erad058DOI Listing

Publication Analysis

Top Keywords

root cap
44
auxin pathways
16
root
15
cap development
12
nitrate signaling
12
cap
11
transcription factor
8
pathways regulate
8
regulate root
8
functions root
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!