The vertebrate transcription factor Kaiso binds specifically to methylated DNA sequences using C2H2-type zinc fingers. In addition to C2H2-domains, the BTB/POZ domain, which forms homodimers, is located at the N-terminus of Kaiso. Kaiso, like several other well-studied BTB/POZ proteins, including BCL6, interacts with the NCoR (nuclear co-repressor) protein, which determines the landing of transcriptional repressive complexes on chromatin. Using the yeast two-hybrid system, we have shown that the N-terminal domain of NCoR interacts with the C-terminal zinc fingers of Kaiso, and not with its BTB/POZ domain, as previously assumed. The results obtained demonstrate that NCoR interacts with various transcription factor domains, which can increase the efficiency of attracting NCoR-dependent repressor complexes to regulatory regions of the genome.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S1607672922340026DOI Listing

Publication Analysis

Top Keywords

transcription factor
12
zinc fingers
8
btb/poz domain
8
ncor interacts
8
kaiso
5
ncor
4
ncor co-repressor
4
interacts
4
co-repressor interacts
4
interacts kaiso
4

Similar Publications

Introduction: Unmet health care needs are seen as a key indicator of equity in access to health care. With younger people, they can lead to poorer health outcomes in adulthood, and in older people they can be associated with an increased risk of mortality. The presence of a disability is considered a risk factor for unmet needs.

View Article and Find Full Text PDF

Background: Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets.

Results: Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers.

View Article and Find Full Text PDF

Rotavirus is the most important cause of severe gastroenteritis in infants and children worldwide. This virus causes an increase in inflammatory responses by increasing cellular oxidative stress and the expression and activity of the transcription factor NF-κB and COX-2. As a result of NF-κB activation, the expression of inflammatory cytokines also increases.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress.

Int J Biol Macromol

January 2025

Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:

B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.

View Article and Find Full Text PDF

Genome-wide analysis of GRAS gene family and functional identification of a putative development and maintenance of axillary meristematic tissue gene PlGRAS22 in Paeonia ludlowii.

Int J Biol Macromol

January 2025

School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:

The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!