To simulate the deposition of drugs in the oro-pharynx region, several in vitro models are available such as the United States Pharmacopeia-Induction Port (USP-IP) throat and the Virginia Commonwealth University (VCU) models. However, currently, there is no such in vitro model that incorporates a biological barrier to elucidate drug transport across the pharyngeal cells. Cellular models such as in vitro air-liquid interface (ALI) models of human respiratory epithelial cell lines are extensively used to study drug transport. To date, no studies have yet been performed to optimise the ALI culture conditions of the human pharyngeal cell line Detroit 562 and determine whether it could be used for drug transport. Therefore, this study aimed to develop a novel 3D-printed throat model integrated with an ALI cellular model of Detroit 562 cells and optimise the culture conditions to investigate whether the combined model could be used to study drug transport, using Lidocaine as a model drug. Differentiating characteristics specific to airway epithelia were assessed using 3 seeding densities (30,000, 60,000, and 80,000 cells/well (c/w), respectively) over 21 days. The results showed that Detroit 562 cells completely differentiates on day 18 of ALI for both 60,000 and 80,000 c/w with significant mucus production, showing response to bacterial and viral stimuli and development of functional tight junctions and Lidocaine transport with no significant differences observed between the ALI models with the 2 cell seeding densities. Results showed the suitability of the Low density (60,000 c/w or 1.8 × 10 cells/cm) ALI model to study drug transport. Importantly, the developed novel 3D-printed throat model integrated with our optimised in vitro Detroit 562 ALI model showed transport of Lidocaine throat spray. Overall, the study highlights the potential of the novel 3D-printed bio-throat integrated model as a promising in vitro system to investigate the transport of inhalable drug therapies targeted at the oro-pharyngeal region.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13346-023-01302-1 | DOI Listing |
Nat Commun
December 2024
ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Fudan University, Shanghai, China.
Thiamine and pyridoxine are essential B vitamins that serve as enzymatic cofactors in energy metabolism, protein and nucleic acid biosynthesis, and neurotransmitter production. In humans, thiamine transporters SLC19A2 and SLC19A3 primarily regulate cellular uptake of both vitamins. Genetic mutations in these transporters, which cause thiamine and pyridoxine deficiency, have been implicated in severe neurometabolic diseases.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Ophthalmology, Columbia University, New York, NY, USA.
Best1 and Best2 are two members of the bestrophin family of anion channels critically involved in the prevention of retinal degeneration and maintenance of intraocular pressure, respectively. Here, we solved glutamate- and γ-aminobutyric acid (GABA)-bound Best2 structures, which delineate an intracellular glutamate binding site and an extracellular GABA binding site on Best2, respectively, identified extracellular GABA as a permeable activator of Best2, and elucidated the co-regulation of Best2 by glutamate, GABA and glutamine synthetase in vivo. We further identified multiple small molecules as activators of the bestrophin channels.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, Duke University School of Medicine, Durham, NC, 27710, USA.
The current opioid crisis urgently calls for developing non-addictive pain medications. Progress has been slow, highlighting the need to uncover targets with unique mechanisms of action. Extracellular adenosine alleviates pain by activating the adenosine A1 receptor (A1R).
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!