In the practical application of microwave absorbing materials, traditional powder materials need to be mixed with the matrix to fabricate composite coatings. However, the complex preparation process of composite coatings and the uneven dispersion of powders in the matrix limit their application. To solve these problems, two-dimensional (2D) F-WS/CP composite films were prepared by using carbon paper (CP) as a dispersion matrix and loading flower-like WS on its surface through a simple hydrothermal method. The morphology and microwave absorption (MA) performance of the composite films are easily regulated by adjusting the amount of reaction precursors. The combination of WS and CP facilitates impedance matching and improves the electromagnetic wave attenuation performance based on the synergistic effect of different loss mechanisms including multiple reflections and scattering, interfacial polarization, dipolar polarization, and conduction loss. At a low filler content (5 wt%), the maximum reflection loss (RL) of the composite film is up to -50 dB (99.999% energy absorption) at 12.5 GHz with 2.8 mm thickness. Moreover, at a relatively thin 1.8 mm thickness, its maximum RL remains -35 dB (>99.9% energy absorption). The as-prepared composite film shows excellent MA properties at a thinner thickness and lower filling content, providing inspiration for the preparation of light weight and efficient 2D thin-film microwave absorbers in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2dt03137j | DOI Listing |
Rev Sci Instrum
January 2025
School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom.
Carbon fiber reinforced polymers (CFRPs) are widely used in fields such as aviation and aerospace. However, subtle defects can significantly impact the material's service life, making defect detection a critical priority. In this paper, delamination defects in CFRP are detected using line laser infrared thermography, and a defect characterization algorithm that combines differential thermography with a frequency-domain filter is proposed.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka Str. 2, 44-100, Gliwice, Poland.
Various novel technologies are currently under development aimed at improving bio-methane output to tackle challenges related to process stability, biogas production, and methane quality in the anaerobic digestion (AD) process. The management of substrate type, temperature, pH, hydraulic retention time (HRT), organic loading rate (OLR), and inoculum origin is essential for ensuring process effectiveness, minimizing inhibition, and maximizing production of biogas and methane yield. The review emphasizes sustainability, focusing on the environmental and economic benefits of anaerobic digestion, including the reduction of greenhouse gas (GHG) emissions, the minimization of landfill waste, and the provision of renewable energy sources.
View Article and Find Full Text PDFIUCrJ
January 2025
Department of Physics, University of Siegen, Siegen, Germany.
The topic of data storage, traceability, and data use and reuse in the years following experiments is becoming an important topic in Europe and across the world. Many scientific communities are striving to create open data by the FAIR principles. This is a requirement from the European Commission for EU-funded projects and experiments at EU-funded research infrastructures (RIs) and from many national funding agencies.
View Article and Find Full Text PDFEnviron Pollut
December 2024
Marine College, Shandong University, Weihai, Shandong, 264209, China. Electronic address:
Artificial reefs (ARs) are an important means of improving marine ecological environments and promoting the sustainable use of marine biological resources. After AR deployment, biological communities undergo dynamic changes as species succession and shifts in community structure. As the most sensitive frontier affected by the environment, the complex and dynamic changes of microbial communities play a crucial role in the health and stability of the ecosystem.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
A multiple-site filter-sampling observation study was conducted in a coastal industrial city (Rizhao, 35°10'59″N, 119°23'57″E) to understand the main components, formation mechanisms, and potential sources of particulate matter. The average (±σ) mass concentration of PM across all the sites was 42 (±27) μg/m, with high variability (6∼202 μg/m). Water-soluble inorganic ions (WSIIs) were the major contributors (54%∼60%) to PM with mean values for sulfate (13 μg/m), nitrate (6 μg/m), and ammonium (7 μg/m) (SNA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!