The incidence of streptococcal toxic shock syndrome (STSS) due to group B Streptococcus (GBS) has been increasing annually in Japan and is becoming a serious challenge. Furthermore, in recent years, penicillin- or clindamycin-resistant strains used in treating streptococcal toxic shock syndrome have been reported. However, no report analyzed >100 isolates of group B Streptococcus causing streptococcal toxic shock syndrome. Therefore, we aimed to perform serotyping and antimicrobial susceptibility testing of 268 isolated group B Streptococcus strains from streptococcal toxic shock syndrome cases involving nonpregnant adult patients in Japan between 2014 and 2021. The most prevalent serotype was Ib, followed by serotypes V, III, and Ia. Seven isolates were resistant to penicillin G, and 17.9% (48 isolates) were resistant to clindamycin. Of the penicillin-resistant group B Streptococcus isolates, 71.4% (5 isolates) were clindamycin resistant. In addition, group B Streptococcus strains resistant to penicillin and clindamycin were isolated from patients with streptococcal toxic shock syndrome. Therefore, before these strains become prevalent, introduction of the group B Streptococcus vaccine is essential for disease prevention. Group B Streptococcus (GBS) has been increasingly associated with invasive disease in nonpregnant adults. Such infections are responsible for substantial morbidity and mortality, particularly in individuals with underlying chronic conditions. Streptococcal toxic shock syndrome (STSS) is a severe invasive infection characterized by the sudden onset of shock, multiorgan failure, and high mortality. In this study, we assessed 268 GBS-related STSS cases in nonpregnant adults in Japan between 2014 and 2021. Serotype Ib was the most prevalent, followed by serotypes V, III, and Ia, which were identified in more than 80% of STSS isolates. We found that 48 clindamycin-resistant strains and 7 penicillin G-resistant strains were isolated between 2014 and 2021. We believe that our study makes a significant contribution to the literature because we show that the GBS vaccine, particularly the hexavalent conjugate vaccine, is important to reduce the number of patients with STSS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10100893 | PMC |
http://dx.doi.org/10.1128/spectrum.04987-22 | DOI Listing |
Appl Biosaf
December 2024
Neuroinfection Laboratory Institute for Infectious Diseases, University of Bern, Bern, Switzerland.
Background: Inactivation of infectious liquid waste can be performed by different means, including autoclaving or chemical inactivation. Autoclaving is most widely used, but cannot always be implemented, so that chemical inactivation is a possible alternative. However, its efficacy has to be proven by in-house validation.
View Article and Find Full Text PDFAppl Biochem Biotechnol
December 2024
Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, India.
Early childhood caries (ECC), a severe form of dental caries, is exacerbated by the synergistic interaction between Streptococcus mutans and Candida albicans, leading to greater disease severity than their individual effects. This underscores the need for more targeted and potent therapeutic alternatives. Given the promising anti-infective properties of quaternary ammonium surfactants (QAS), this study explores the microbicidal properties of one such QAS, cetyltrimethylammonium chloride (CTAC), against both individual- and dual-species cultures of S.
View Article and Find Full Text PDFInfect Disord Drug Targets
December 2024
Depart-ment of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Introduction: Biosurfactants are naturally occurring compounds with various ap-plications, biodegradable, non-toxic, and effective in different conditions. This study fo-cuses on the extraction and evaluation of biosurfactants produced by five strains of lactic acid bacteria [LAB] for their potential to inhibit biofilm formation and adhesion by Strep-tococcus mutans.
Methods: The strains of LAB-producing biosurfactants such as Lactobacillus salivarius, L.
J Infect Public Health
January 2025
Department of Infectious Diseases and Child Neurology, Institute of Paediatrics, Poznan University of Medical Sciences, Poland.
Background: Group A Streptococci (GAS) may cause infections of the pharynx and soft tissues and invasive infections in children (iGAS). A significant increase in severe iGAS infections has been reported in Europe since the fall of 2022.
Objectives: This retrospective study aims to analyse clinical data of children with invasive and non-invasive GAS infections in the post-COVID-19 pandemic era, searching for predisposing factors to developing invasive infections.
J Antimicrob Chemother
December 2024
Department of Medical Laboratory Science, I-Shou University, Kaohsiung City, Taiwan.
Objectives: Group A Streptococcus (GAS) results in invasive diseases. Our published studies show that AR-12 can directly kill GAS. However, AR-12 is toxic to the human microvascular endothelial cells (HMEC-1 cells) even at its MIC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!