Clostridioides difficile is a Gram-positive opportunistic pathogen responsible for 250,000 hospital-associated infections, 12,000 hospital-associated deaths, and $1 billion in medical costs in the United States each year. There has been recent interest in using a daptomycin analog, surotomycin, to treat C. difficile infections. Daptomycin interacts with phosphatidylglycerol and lipid II to disrupt the membrane and halt peptidoglycan synthesis. C. difficile has an unusual lipid membrane composition, as it has no phosphatidylserine or phosphatidylethanolamine, and ~50% of its membrane is composed of glycolipids, including the unique C. difficile lipid aminohexosyl-hexosyldiradylglycerol (HNHDRG). We identified a two-component system (TCS), HexRK, that is required for C. difficile resistance to daptomycin. Using transcriptome sequencing (RNA-seq), we found that HexRK regulates expression of , a three-gene operon of unknown function. Based on bioinformatic predictions, encodes a monogalactosyldiacylglycerol synthase, encodes a polysaccharide deacetylase, and encodes an MprF-like flippase. Deletion of leads to a 4-fold decrease in daptomycin MIC, and that deletion of leads to an 8- to 16-fold decrease in daptomycin MIC. The Δ mutant is also 4-fold less resistant to bacitracin but no other cell wall-active antibiotics. Our data indicate that in the absence of HexSDF, the phospholipid membrane composition is altered. In wild-type (WT) C. difficile, the unique glycolipid HNHDRG makes up ~17% of the lipids in the membrane. However, in a Δ mutant, HNHDRG is completely absent. While it is unclear how HNHDRG contributes to daptomycin resistance, the requirement for bacitracin resistance suggests it has a general role in cell membrane biogenesis. Clostridioides difficile is a major cause of hospital-acquired diarrhea and represents an urgent concern due to the prevalence of antibiotic resistance and the rate of recurrent infections. Little is understood about C. difficile membrane lipids, but a unique glycolipid, HNHDRG, has been previously identified in C. difficile and, currently, has not been identified in other organisms. Here, we show that HexSDF and HexRK are required for synthesis of HNHDRG and that production of HNHDRG impacts resistance to daptomycin and bacitracin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10128005PMC
http://dx.doi.org/10.1128/mbio.03397-22DOI Listing

Publication Analysis

Top Keywords

difficile
10
required synthesis
8
daptomycin
8
daptomycin bacitracin
8
bacitracin resistance
8
clostridioides difficile
8
membrane composition
8
hnhdrg identified
8
hexrk required
8
resistance daptomycin
8

Similar Publications

Background: Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea.

Methods: Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea.

View Article and Find Full Text PDF

: This systematic review evaluates the effectiveness of fecal microbiota transplantation (FMT) in treating infection (CDI) in mouse models using a metabolomics-based approach. : A comprehensive search was conducted in three databases (PubMed, Scopus, Google Scholar) from 10 April 2024 to 17 June 2024. Out of the 460 research studies reviewed and subjected to exclusion criteria, only 5 studies met all the inclusion criteria and were analyzed.

View Article and Find Full Text PDF

is a common etiological factor of hospital infections, which, in extreme cases, can lead to the death of patients. Most strains belonging to this bacterium species synthesize very dangerous toxins: toxin A (TcdA) and B (TcdB) and binary toxin (CDT). The aim of this study was to assess the suitability of agarose gel electrophoresis separation of multiplex PCR amplicons to investigate the toxinogenic potential of strains.

View Article and Find Full Text PDF

Fecal microbiota transplantation for glaucoma; a potential emerging treatment strategy.

Curr Res Microb Sci

November 2024

HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.

Glaucoma is the primary cause of irreversible blindness globally. Different glaucoma subtypes are identified by their underlying mechanisms, and treatment options differ by its pathogenesis. Current management includes topical medications to lower intraocular pressure and surgical procedures like trabeculoplasty and glaucoma drainage implants.

View Article and Find Full Text PDF

In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!