Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cryptococcus neoformans () is an opportunistic, encapsulated, yeast-like fungus that causes severe meningoencephalitis, especially in countries with high HIV prevalence. In addition to its well-known polysaccharide capsule, has other virulence factors such as phospholipases, a heterogeneous group of enzymes that hydrolyze ester linkages in glycerophospholipids. Phospholipase B (PLB1) has been demonstrated to play a key role in pathogenicity. In this study, we used a PLB1 mutant () and its reconstituted strain (Rec1) to assess the importance of this enzyme on brain infection and . Mice infected with the strain survive significantly longer, have lower peripheral and central nervous system (CNS) fungal loads, and have fewer and smaller cryptococcomas or biofilm-like brain lesions compared to H99- and Rec1-infected animals. PLB1 causes extensive brain tissue damage and changes microglia morphology during cryptococcal disease, observations which can have important implications in patients with altered mental status or dementia as these manifestations are related to poorer survival outcomes. cryptococci are significantly more phagocytosed and killed by NR-9460 microglia-like cells. cells have altered capsular polysaccharide biophysical properties which impair their ability to stimulate glial cell responses or morphological changes. Here, we provide significant evidence demonstrating that PLB1 is an important virulence factor for fungal colonization of and survival in the CNS as well as in the progression of cryptococcal meningoencephalitis. These findings may potentially help fill in a gap of knowledge in our understanding of cerebral cryptococcosis and provide novel research avenues in pathogenesis. Cryptococcal meningoencephalitis (CME) is a serious disease caused by infection by the neurotropic fungal pathogen Cryptococcus neoformans. Due to the increasing number of cases in HIV-infected individuals, as well as the limited therapies available, investigation into potential targets for new therapeutics has become critical. Phospholipase B is an enzyme synthesized by that confers virulence to the fungus through capsular enlargement, immunomodulation, and intracellular replication. In this study, we examined the properties of PLB1 by comparing infection of a PLB1 mutant strain with both the wild-type and a PLB1-reconstituted strain. We show that PLB1 augments the survival and proliferation of the fungus in the CNS and strengthens virulence by modulating the immune response and enhancing specific biophysical properties of the fungus. PLB1 expression causes brain tissue damage and impacts glial cell functions, which may be responsible for the dementia observed in patients which may persist even after resolving from CME. The implications of PLB1 inhibition reveal its involvement in infection and suggest that it may be a possible molecular target in the development of antifungal therapies. The results of this study support additional investigation into the mechanism of PLB1 to further understand the intricacies of cerebral infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10127605 | PMC |
http://dx.doi.org/10.1128/mbio.02640-22 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!