Motivation: Plasma ionization is rapidly gaining popularity for mass spectrometry (MS)-based studies of volatiles and aerosols. However, data from plasma ionization are delicate to interpret as competing ionization pathways in the plasma create numerous ion species. There is no tool for detection of adducts and in-source fragments from plasma ionization data yet, which makes data evaluation ambiguous.

Summary: We developed DBDIpy, a Python library for processing and formal analysis of untargeted, time-sensitive plasma ionization MS datasets. Its core functionality lies in the identification of in-source fragments and identification of rivaling ionization pathways of the same analytes in time-sensitive datasets. It further contains elementary functions for processing of untargeted metabolomics data and interfaces to an established ecosystem for analysis of MS data in Python.

Availability And Implementation: DBDIpy is implemented in Python (Version ≥ 3.7) and can be downloaded from PyPI the Python package repository (https://pypi.org/project/DBDIpy) or from GitHub (https://github.com/leopold-weidner/DBDIpy).

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9942549PMC
http://dx.doi.org/10.1093/bioinformatics/btad088DOI Listing

Publication Analysis

Top Keywords

plasma ionization
20
dbdipy python
8
python library
8
library processing
8
processing untargeted
8
mass spectrometry
8
ionization pathways
8
in-source fragments
8
ionization
7
plasma
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!