Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Gas permeability, the product of gas diffusivity and Henry's gas-absorption constant, of ionomer membranes is an important transport parameter in fuel cell and electrolyzer research as it governs gas crossover between electrodes and perhaps in the catalyst layers as well. During transient operation, it is important to divide the gas permeability into its constituent properties as they are individually important. Although transient microelectrode measurements have been used previously to separate the gas permeability into these two parameters, inconsistencies remain in the interpretation of the experimental techniques. In this work, a new interpretation methodology is introduced for determining independently diffusivity and Henry's constant of hydrogen and oxygen gases in ionomer membranes (Nafion 211 and Nafion XL) as a function of relative humidity using microelectrodes. Two time regimes are accounted for. At long times, gas permeability is determined from a two-dimensional numerical model that calculates the solubilized-gas concentration profiles at a steady state. At short times, permeability is deconvoluted into diffusivity and Henry's constant by analyzing transient data with an extended Cottrell equation that corrects for actual electrode surface area. Gas permeability and diffusivity increase as relative humidity increases for both gases in both membranes, whereas Henry's constants for both gases decrease with increasing relative humidity. In addition, results for Nafion 211 membranes are compared to a simple phase-separated parallel-diffusion transport theory with good agreement. The two-time-regime analysis and the experimental methodology can be applied to other electrochemical systems to enable greater precision in the calculation of transport parameters and to further understanding of gas transport in fuel cells and electrolyzers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838820 | PMC |
http://dx.doi.org/10.1021/acsmeasuresciau.1c00058 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!