The long-focal-depth mirror is a novel reflective element proposed in recent years. Due to the advantages of negligible dependence on wavelength and high damage threshold, it is suitable to focus ultra-short laser pulses with broadband spectra and high intensity with a focal depth of centimeter scale. To the best of our knowledge, the focusing properties of this mirror has been only studied under low numerical aperture (NA). In this paper, we extend it to the case of high NA and it is proved that an accelerating superluminal laser focus can be always generated by this extension, in which the degree of acceleration increases with the increase of NA. And the velocity of laser focus increases approximately linearly from c to 1.6c for NA = 0.707. Due to its properties of tight focusing, the Richards-Wolf integrals have been used to study the intensity distribution of each polarization component for different kinds of incident light. And these are linearly polarized light, radially polarized light, azimuthally polarized light, linearly polarized light with spiral phase, and linearly polarized light with ultrashort pulses. From comparisons of numerical results, the intensity distributions are obviously different for different kind of incident light, and accelerating superluminal laser focus with special structure (such as the hollow conical beam) can be produced under appropriate condition. We believe this study can expand the fields of application for the long-focal-depth mirror.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.478768 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea.
The unique characteristics of metasurfaces to precisely control the amplitude, phase, and polarization of light within a thin, flat footprint make them a promising replacement for bulky optical components. However, fabrication methods of conventional metasurfaces have suffered from low throughput and high costs, limiting scalability and practical application. To address these challenges, an advanced fabrication technique is developed by combining deep-ultraviolet argon fluoride photolithography with wafer-scale nanotransfer printing to facilitate the scalable fabrication of metal-insulator-metal structures.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China.
The full-dimensional potential energy surface (PES) for the photodissociation of HNCS in the S(″) electronic state has been built up by the neural network method based on more than 48,000 points, which were calculated at the multireference configuration interaction level with Davidson correction using the augmented correlation consistent polarized valence triple-ζ basis set. It was found that two minima, namely, and isomers of HNCS, and seven stationary points exist on the S PES for the three dissociation pathways: HNCS(S) → H + NCS/HNC + S(D)/HN(Δ) + CS(Σ). The dissociation energies of two lowest product channels H + NCS and HNC + S(D) calculated on the PES are in good agreement with experimental results, validating the high accuracy of the PES.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute for Structure and Function and Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing 400044, People's Republic of China and Center of Quantum Materials and Devices, Chongqing University, Chongqing 400044, People's Republic of China.
Recent studies have attracted widespread attention on magnet-superconductor hybrid systems with emergent topological superconductivity. Here, we present the Floquet engineering of realistic two-dimensional topological nodal-point superconductors that are composed of antiferromagnetic monolayers in proximity to an s-wave superconductor. We show that Floquet chiral topological superconductivity arises due to light-induced breaking of the effective time-reversal symmetry.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India.
Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.
View Article and Find Full Text PDFNat Commun
January 2025
Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Alzheimer's disease is characterized by progressive amyloid deposition and cognitive decline, yet the pathological mechanisms and treatments remain elusive. Here we report the therapeutic potential of low-intensity 40 hertz blue light exposure in a 5xFAD mouse model of Alzheimer's disease. Our findings reveal that light treatment prevents memory decline in 4-month-old 5xFAD mice and motivation loss in 14-month-old 5xFAD mice, accompanied by restoration of glial water channel aquaporin-4 polarity, improved brain drainage efficiency, and a reduction in hippocampal lipid accumulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!