Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, we demonstrate the elongated Type I modifications in fused silica with an axial length > 50 µm. Such extended longitudinal dimensions were obtained by deep focusing radiation of a femtosecond laser inside fused silica at a depth of 2 mm. The transition from the Type II modification (nanogratings) to the Type I modification (refraction index change) was observed with increasing focusing depth at the constant pulse energy. The refractive index changes of ∼ 1.5×10 for a single pass and 2.4×10 for multiple passes were demonstrated. The radial dimensions of the deep-focused modifications were confined to 0.5-1.5 µm size. By overlapping the modifications in radial and axial directions, 1D phase grating in the depth range from 2 to 5 mm was recorded, allowing to split of the beam with a diffraction efficiency of > 96%. We demonstrate that the aberration-based recording with a Gaussian beam in fused silica is a simple tool for fabricating complex phase diffractive optical elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.477343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!