Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, biometrics has become widely used in applications to verify an individual's identity. To address security issues, biometrics presents an intriguing window of opportunity to enhance the usability and security of the Internet of Things (IoT) and other systems. It can be used to secure a variety of newly emerging IoT devices. However, biometric scenarios need more protection against different hacking attempts. Various solutions are introduced to secure biometrics. Cryptosystems, cancelable biometrics, and hybrid systems are efficient solutions for template protection. The new trend in biometric authentication systems is to use bio-signals. In this paper, two proposed authentication systems are introduced based on bio-signals. One of them is unimodal, while the other is multimodal. Protected templates are obtained depending on encryption. The deoxyribonucleic acid (DNA) encryption is implemented on the obtained optical spectrograms of bio-signals. The authentication process relies on the DNA sensitivity to variations in the initial values. In the multimodal system, the singular value decomposition (SVD) algorithm is implemented to merge bio-signals. Different evaluation metrics are used to assess the performance of the proposed systems. Simulation results prove the high accuracy and efficiency of the proposed systems as the equal error rate (EER) value is close to 0 and the area under the receiver operator characteristic curve (AROC) is close to 1. The false accept rate (FAR), false reject rate (FRR), and decidability (D) are also estimated with acceptable results of 1.6 × 10, 9.05 × 10, and 29.34, respectively. Simulation results indicate the performance stability of the proposed systems in the presence of different levels of noise.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.478215 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!