Nowadays, atom-based quantum sensors are leaving the laboratory towards field applications requiring compact and robust laser systems. Here we describe the realization of a compact laser system for atomic gravimetry. Starting with a single diode laser operating at 780 nm and adding only one fiber electro-optical modulator, one acousto-optical modulator and one laser amplifier we produce laser beams at all the frequencies required for a Rb-87 atomic gravimeter. Furthermore, we demonstrate that an atomic fountain configuration can also be implemented with our laser system. The modulated system reported here represents a substantial advance in the simplification of the laser source for transportable atom-based quantum sensors that can be adapted to other sensors such as atomic clocks, accelerometers, gyroscopes or magnetometers with minor modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.477648DOI Listing

Publication Analysis

Top Keywords

compact laser
8
atomic gravimeter
8
atom-based quantum
8
quantum sensors
8
laser system
8
laser
7
atomic
5
laser modulation
4
system
4
modulation system
4

Similar Publications

We demonstrate a compact ring-assisted Mach-Zehnder interferometer (RAMZI)-based silicon photonic interleaver with a 400 GHz free spectral range (FSR), featuring flat passbands exceeding a spectral range of 50 nm. Additionally, we introduce a novel, to the best of our knowledge, add-on structure and tuning method enabling automated compensation for fabrication imperfections, precise shaping of the RAMZI flat-top passbands, and alignment with Kerr comb lines. Experimental results have shown successful interleaving of eight channels of distributed-feedback (DFB) lasers as well as a 200 GHz Kerr comb, both achieving an extinction ratio of approximately 20 dB.

View Article and Find Full Text PDF

A compact and portable gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) for the detection of methane (C1), ethane (C2), and propane (C3) in natural gas (NG)-like mixtures is reported. An interband cascade laser (ICL) emitting at 3367 nm is employed to target absorption features of the three alkanes, and partial least-squares regression analysis is employed to filter out spectral interferences and matrix effects characterizing the examined gas mixtures. Spectra of methane, ethane, and propane mixtures diluted in nitrogen are employed to train and test the regression algorithm, achieving a prediction accuracy of ∼98%, ∼96%, and ∼93% on C1, C2, and C3, respectively.

View Article and Find Full Text PDF

Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing.

Nanomaterials (Basel)

January 2025

School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.

This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.

View Article and Find Full Text PDF

A compact dual-gas sensor based on the two near-infrared distributed feedback diode lasers and a multipass cell has been established for the simultaneous measurement of methane (CH) and acetylene (CH). The time division multiplexing calibration-free direct absorption spectroscopy is used to eliminate the cross interference in the application of multicomponent gas sensors. A wavelength stabilization technique based on the proportion integration differentiation feedback control is developed to suppress laser wavelength drift and an H-infinity (H) filter algorithm to reduce the system noise.

View Article and Find Full Text PDF

Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!