A multifunctional metamaterial to realize broadband x-to-y cross-polarization conversion (CPC) and the absorption of electromagnetic waves is proposed in this paper. The presented multifunctional water-based metamaterial (MWM) consists of the top metallic dielectric substrate, the middle 3D printed container, and the bottom metal backplane. When the container is filled with water, the polarization conversion ratio (PCR) reaches more than 90% at 5.8-9.4 GHz, and the excellent absorption performance is achieved in the frequency band of 16.1-16.9 GHz. In addition, the CPC is achieved in two frequency bands (5.9-10.0 GHz and 14.3-16.4 GHz) without water injection. The unique properties of the proposed design are validated by experiments. As expected, the MWM simultaneously achieves polarization conversion and absorption functions, which is meaningful and consequential for multifunction and conformal stealth applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.479836DOI Listing

Publication Analysis

Top Keywords

polarization conversion
12
multifunctional water-based
8
water-based metamaterial
8
conversion absorption
8
achieved frequency
8
metamaterial polarization
4
conversion
4
absorption
4
absorption multifunctional
4
multifunctional metamaterial
4

Similar Publications

Gesture-controlled reconfigurable metasurface system based on surface electromyography for real-time electromagnetic wave manipulation.

Nanophotonics

January 2025

Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.

View Article and Find Full Text PDF

The development of acid-stable water oxidation electrocatalysts is crucial for high-performance energy conversion devices. Different from traditional nanostructuring, here we employ an innovative microwave-mediated electron-phonon coupling technique to assemble specific Ru atomic patterns (instead of random Ru-particle depositions) on MnCrO surfaces (Ru-MnCrO) in RuCl solution because hydrated Ru-ion complexes can be uniformly activated to replace some Mn sites at nearby Cr-dopants through microwave-triggered energy coherent superposition with molecular rotations and collisions. This selective rearrangement in Ru-MnCrO with particular spin-differentiated polarizations can induce localized spin domain inversion from reversed to parallel direction, which makes Ru-MnCrO demonstrate a high current density of 1.

View Article and Find Full Text PDF

As the hyperentanglement of photon systems holds lots of remarkable applications for enhancing channel capacity with less quantum resource, the interconversion of various hyperentangled states warrants in-depth investigation and becomes a vital work for quantum information technologies. Here we realize completely mutual conversions between spatial-polarization hyperentangled Knill-Laflamme-Milburn state and hyperentangled W state for three-photon systems, resorting to hyperparallel quantum control gates and the practical nonlinear interaction of nitrogen-vacancy centers coupled with whispering-gallery-mode microresonators. The hyperparallel quantum gates, i.

View Article and Find Full Text PDF

High spin-orbit torque efficiency induced by engineering spin absorption for fully electric-driven magnetization switching.

Mater Horiz

January 2025

School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.

Realizing spin-orbit torque (SOT)-driven magnetization switching offers promising opportunities for the advancement of next-generation spintronics. However, the relatively low charge-spin conversion efficiency accompanied by an ultrahigh critical switching current density () remains a significant obstacle to the further development of SOT-based storage elements. Herein, spin absorption engineering at the ferromagnet/nonmagnet interface is firstly proposed to achieve high SOT efficiency in Pt/Co/Ir trilayers.

View Article and Find Full Text PDF

Nitrogen-Doped Porous Nanofiber Aerogel-Encapsulated Staphylo-NiS Accelerating Polysulfide Conversion for Efficient Li-S Batteries.

ACS Appl Mater Interfaces

January 2025

College of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xian 710021, China.

The low conductivity of sulfur substances and the fussy effect of lithium polysulfides (LPS) limit the practical application of lithium-sulfur batteries (LSBs). In this work, NiS is in situ synthesized on N-doped 3D carbon nanofibers with an optimized pore structure as a cathode material for LSBs. The conductive carbon nanofiber skeleton with a hierarchical (micropore-mesopore-macropore) structure etched by Cd can reduce the interface resistance of the cathode and remiss volume expansion during charge-discharge progress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!