Electro-holography is a promising 3D display technology, as it can, in principle, account for all visual cues. Computing the interference patterns to drive them is highly calculation-intensive, requiring the design and development of efficient computer-generated holography (CGH) algorithms to facilitate real-time display. In this work, we propose a new algorithm for computing the CGH for arbitrary 3D curves using splines, as opposed to previous solutions, which could only draw planar curves. The solutions are analytically expressed; we conceived an efficiently computable approximation suitable for GPU implementations. We report over 55-fold speedups over the reference point-wise algorithm, resulting in real-time 4K holographic video generation of complex 3D curved objects. The proposed algorithm is validated numerically and optically on a holographic display setup.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.480095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!