Traditional plenoptic wavefront sensors (PWFS) suffer from the obvious step change of the slope response, leading to poor wavefront detection performance. In order to solve this problem, in this paper, a deep learning model is proposed to restore phase maps directly from slope measurements of PWFS. Numerical simulations are employed to demonstrate our approach, and the statistical residual wavefront root mean square error (RMSE) of our method is 0.0810 ± 0.0258λ, which is much superior to those of modal algorithm (0.2511 ± 0.0587λ) and zonal approach (0.3584 ± 0.0487λ). The internal driving force of PWFS-ResUnet is investigated, and the slope response differences between sub-apertures and directions are considered as a probably key role to help our model to accurately restore the phase map. Additionally, the robustness of our model to turbulence strength and signal-to-noise ratio (SNR) level is also tested. The proposed method provides a new direction to solve the nonlinear problem of traditional PWFS.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.478239DOI Listing

Publication Analysis

Top Keywords

deep learning
8
plenoptic wavefront
8
wavefront detection
8
slope response
8
restore phase
8
wavefront
5
learning assisted
4
assisted plenoptic
4
wavefront sensor
4
sensor direct
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!