High-repetition-rate (up to GHz) femtosecond mode-locked lasers have attracted significant attention in many applications, such as broadband spectroscopy, high-speed optical sampling, and so on. In this paper, the characteristics of dispersion-managed, polarization-maintaining (PM) 1-GHz mode-locked fiber lasers were investigated both experimentally and numerically. Three compact and robust 1-GHz fiber lasers operating at anomalous, normal, and near-zero dispersion regimes were demonstrated, respectively. The net dispersion of the linear cavity is adjusted by changing types of PM erbium-doped fibers (EDFs) and semiconductor saturable absorber mirrors (SESAMs) in the cavity. Moreover, the long-term stability of the three mode-locked fiber lasers is proved without external control. In order to better understand the mode-locking dynamics of lasers, a numerical model was constructed for analysis of the 1-GHz fiber laser. Pulse evolution simulations have been carried out for soliton, dissipative-soliton, and stretched-pulse mode-locking regimes under different net dispersion conditions. Experimental results are basically in agreement with the numerical simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.473457DOI Listing

Publication Analysis

Top Keywords

fiber lasers
16
mode-locked fiber
12
dispersion-managed polarization-maintaining
8
polarization-maintaining 1-ghz
8
1-ghz mode-locked
8
1-ghz fiber
8
net dispersion
8
lasers
6
fiber
5
theoretical experimental
4

Similar Publications

Fibrin film on clots is increased by haematocrit but reduced by inflammation: implications for platelets and fibrinolysis.

J Thromb Haemost

January 2025

Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK.

Background: Blood clot formation, triggered by vascular injury, is crucial for haemostasis and thrombosis. Blood clots are composed mainly of fibrin fibres, platelets and red blood cells (RBCs). Recent studies show that clot surface also develops a fibrin film, which provides protection against wound infection and retains components such as RBCs within the clot.

View Article and Find Full Text PDF

Purpose: To describe two cases of pediatric patients with Coats disease who developed nerve fiber layer (NFL) schisis.

Methods: Observational case series.

Results: Two male pediatric patients, ages 2 and 14, who were being treated for Coats disease were found to have NFL schisis on optical coherence tomography.

View Article and Find Full Text PDF
Article Synopsis
  • PFAS are stable yet harmful chemicals, vital for modern technologies but persistent pollutants affecting health.
  • The study focuses on completely breaking down GenX, a PFAS replacement, using electrocatalysis in LiOH solutions with specialized nanocatalysts.
  • The approach is environmentally friendly, utilizing nonprecious materials and without the need for auxiliary chemicals, offering a potential solution to mitigate PFAS pollution.
View Article and Find Full Text PDF

Introduction: Laser ablation using a 980-nm wavelength diode laser, which is a new-generation laser, for recurrent bladder cancer is known to have a lower incidence of complications and recurrence than conventional transurethral resection of bladder tumor surgery. This is the first study to report the use of 980-nm diode laser ablation for recurrent non-muscle-invasive bladder cancer in Japan.

Case Presentation: A 73-year-old man underwent transurethral laser ablation for the treatment of recurrent non-muscle-invasive bladder cancer.

View Article and Find Full Text PDF

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!