All-solid-state beam scanning chip is ideal for next-generation LiDAR due to its reliability and small size. Here we propose a focal plane array chip for two-dimensional scanning using field-of-view splicing technology on silicon photonics platform. The chip has two rotationally symmetric structures, each including a 1 × 64 antenna array accompanied by a 1 × 64 micro-ring optical switch array. We demonstrate a two-dimensional scanning equivalent to an 8-line LiDAR with a field-of-view of 82° × 32°, a beam divergence angle of 0.07° × 0.07°, and a background suppression ratio of over 20 dB. Our chip works in such a simple way that only one optical switch needs to be turned on each time the beam is emitted. And the chip is scalable that a larger range of two-dimensional scanning can be achieved when using more antennas for field-of-view splicing and cascading more optical switches.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.480280 | DOI Listing |
In image-guided radiotherapy (IGRT), four-dimensional cone-beam computed tomography (4D-CBCT) is critical for assessing tumor motion during a patients breathing cycle prior to beam delivery. However, generating 4D-CBCT images with sufficient quality requires significantly more projection images than a standard 3D-CBCT scan, leading to extended scanning times and increased imaging dose to the patient. To address these limitations, there is a strong demand for methods capable of reconstructing high-quality 4D-CBCT images from a 1-minute 3D-CBCT acquisition.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11541, Saudi Arabia.
The ongoing challenge of water pollution necessitates innovative approaches to remove organic contaminants from wastewater. In this work, new two-dimensional S-scheme heterojunction photocatalysts BiO/CdS and MoS/BiO/CdS that are intended for the effective photocatalytic destruction of 4-nitrophenol, a dangerous organic pollutant, are synthesized and characterized. Utilizing a solvothermal method, successfully generated these ternary nanocomposites, which were characterized through various techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electronmicroscopy (HRTEM), Brunauer-Emmett-Telle (BET) and diffuse reflectance spectroscopy (DRS).
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hunan Key Laboratory of Applied Environmental Photocatalysis, School of Materials and Environmental Engineering, Changsha University, Changsha 410022, China.
The development of materials with high adsorption capacity for capturing CO from industrial exhaust gases has proceeded rapidly in recent years. LiSiO has attracted attention due to its low cost, high capture capacity, and good cycling stability for direct high-temperature CO capture. Thus far, the CO adsorption mechanism of LiSiO is poorly understood, and detailed phase transformations during the CO adsorption process are missing.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterological Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
The epithelial and mesenchymal features of colorectal adenocarcinoma (CRAC) cell lines were compared in two-dimensional (2D) and three-dimensional (3D) cultures. In 2D cultures, the three CRAC cell lines exhibited epithelial characteristics with high E-cadherin and low vimentin levels, whereas two exhibited mesenchymal traits with opposite expression patterns. In 3D cultures using low-attachment plates, mesenchymal cells from 2D cultures showed reduced vimentin mRNA levels.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Materials Design and Innovation, University at Buffalo, Buffalo, New York 14260-1660, United States.
This study presents a hybrid microfiltration technology designed for high-performance lead (Pb(II)) remediation, especially from aqueous solutions with high Pb(II) concentrations, by utilizing two-dimensional (2D) TiCT-MXene layers deposited on dry mycelium membranes. The hybrid TiCT-MXene/mycelium (MyMX) membranes were fabricated via a single-step electrochemical deposition (ECD) technique, which enabled a uniform coating of 2D TiCT-MXene onto individual hyphal fibers of a prefabricated mycelium membrane. Optimized ECD parameters for high Pb(II) uptake were identified using scanning electron microscopy and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!