Providing sufficient energy supply and reducing the effects of global warming are serious challenges in the present decades. In recent years, biodiesel has been viewed as an alternative to exhaustible fossil fuels and can potentially reduce global warming. Here we report for the first time the production of biodiesel from oleic acid (OA) as a test substrate using porous sulfonic acid functionalized banana peel waste as a heterogeneous catalyst under microwave irradiation. The morphology and chemical composition of the catalyst was investigated using Powder X-ray diffraction (PXRD) analysis, Fourier transform infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA), Transmission electron microscopy (TEM), and Scanning electron microscopy- Energy dispersive X-ray spectroscopy (SEM-EDX). The SEM-EDX analysis of the catalyst revealed the presence of sulfur in 4.62 wt% amounting to 1.4437 mmol g sulfonic acids, which is accorded to the high acidity of the reported catalyst. Using response surface methodology (RSM), through a central composite design (CCD) approach, 97.9 ± 0.7% biodiesel yield was observed under the optimized reaction conditions (methanol to OA molar ratio of 20:1, the temperature of 80 °C, catalyst loading of 8 wt% for 55 min). The catalyst showed excellent stability on repeated reuse and can be recycled at least 5 times without much activity loss.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925450PMC
http://dx.doi.org/10.1038/s41598-023-29883-4DOI Listing

Publication Analysis

Top Keywords

response surface
8
surface methodology
8
global warming
8
catalyst
7
microwave-assisted biodiesel
4
biodiesel production
4
production bio-waste
4
bio-waste catalyst
4
catalyst process
4
process optimization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!