Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Early detection of solid tumors through a simple screening process, such as the proteomic analysis of biofluids, has the potential to significantly alter the management and outcomes of cancers. The application of advanced targeted proteomics measurements and data analysis strategies to uniformly collected serum or plasma samples would enable longitudinal studies of cancer risk, progression, and response to therapy that have the potential to significantly reduce cancer burden in general. In this article, we describe a generalizable workflow combining robust, multiplexed targeted proteomics measurements applied to longitudinal samples from the Department of Defense Serum Repository with a Random Forest machine learning method for developing and initially evaluating the performance of candidate biomarker panels for early detection of cancers. The effectiveness of this approach was demonstrated in a cohort of 175 head and neck squamous cell carcinoma patients. The outlined protocols include methods for sample preparation, instrument analysis, and data analysis and interpretation using this workflow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2978-9_33 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!