Comparative Assessment of Methane Emissions from Onshore LNG Facilities Measured Using Differential Absorption Lidar.

Environ Sci Technol

National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, U.K.

Published: February 2023

This study provides results from measurements of methane emissions from three onshore LNG liquefaction facilities and two regasification facilities across different regions using the Differential Absorption Lidar (DIAL) technique. The measurement approach was to quantify, at each facility, emissions from the key functional elements (FEs), defined as spatially separable areas related to different identified processes. The DIAL technique enabled quantification of emissions at the FE level, allowing emission factors (EFs) to be determined for each FE using activity data. The comprehensive data set presented here should not be used for annualization, however shows the potential of what could be achieved with a larger sample size in terms of potential methane reduction and improving inventory accuracy. Among the benefits in obtaining data with this level of granularity is the possibility to compare the emissions of similar FEs on different plants including FEs present in both liquefaction and regasification facilities. Emissions from noncontinuous sources and superemitters can also be identified and quantified enabling more accurate inventory reporting and targeted maintenance and repair. Site throughput during the measurement periods was used to characterize total site EF; on average the methane losses were 0.018% and 0.070% of throughput at the regasification and liquefaction facilities, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9979641PMC
http://dx.doi.org/10.1021/acs.est.2c05446DOI Listing

Publication Analysis

Top Keywords

methane emissions
8
onshore lng
8
differential absorption
8
absorption lidar
8
liquefaction facilities
8
regasification facilities
8
dial technique
8
emissions
6
facilities
5
comparative assessment
4

Similar Publications

Waste has emerged as a pressing concern for the environment, primarily stemming from the processes of urbanization and industrialization. The substantial volumes of waste generated pose a serious threat to the environment, as they spread out harmful substances in the soil and release methane emissions into the atmosphere. To effectively address this issue, this study explores the impact of municipal and industrial waste, as well as waste-related innovation on the load capacity factor (LCF) from 2005 to 2020.

View Article and Find Full Text PDF

Optimizing Point-in-Space Continuous Monitoring System Sensor Placement on Oil and Gas Sites.

ACS Sustain Resour Manag

January 2025

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, United States.

We propose a generic, modular framework to optimize the placement of point-in-space continuous monitoring system sensors on oil and gas sites aiming to maximize the methane emission detection efficiency. Our proposed framework substantially expands the problem scale compared to previous related studies and can be adapted for different objectives in sensor placement. This optimization framework is comprised of five steps: (1) simulate emission scenarios using site-specific wind and emission information; (2) set possible sensor locations under consideration of the site layout and any site-specific constraints; (3) simulate methane concentrations for each pair of emission scenario and possible sensor location; (4) determine emissions detection based on the site-specific simulated concentrations; and (5) select the best subset of sensor locations, under a given number of sensors to place, using genetic algorithms combined with Pareto optimization.

View Article and Find Full Text PDF

Although 3-nitrooxypropanol (3-NOP; Bovaer10) has been proven to reduce enteric methane (CH) by ∼30% in indoor systems of dairying when the additive is mixed throughout TMR and partial mixed ration (PMR) diets, there has been limited research to date on the CH abatement potential of 3-NOP when mixed within a diet based on perennial ryegrass silage only and fed to pregnant nonlactating dairy cows. To investigate the effect of 3-NOP supplementation on enteric CH emissions of pregnant nonlactating dairy cows, a 6-wk study was undertaken in which treatment cows were supplemented with 3-NOP mixed within grass silage, whereas control cows were offered grass silage without additive supplementation. Enteric CH, hydrogen (H), and carbon dioxide (CO) were measured using a GreenFeed machine.

View Article and Find Full Text PDF

Revising the coal mining CH emission factor based on multiple inventories and atmospheric inversion approach at one of the world's largest coal production areas: Shanxi province, China.

Sci Total Environ

January 2025

College of Ecology and Environment, Joint Center for sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Yale-NUIST Center on Atmospheric Environment, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China. Electronic address:

Methane (CH) emissions from the coal industry represent a substantial portion of anthropogenic CH emissions from energy-related activities. China ranks as the world's largest coal producer, where Shanxi Province is one of its major coal production regions and accounts for 20.7 % of the national total coal production.

View Article and Find Full Text PDF

Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!