Panax root is an important material used in food and medicine. Its cultivation and production usually depend on root shape and ginsenoside content. There is limited understanding about the synergistic regulatory mechanisms underlying root development and ginsenoside accumulation in Panax. MADS-box transcription factors possibly play a significant role in regulation of root growth and secondary metabolites. In this study, we identified MADS-box transcription factors of Panax, and found high expression levels of SVP, ANR1 and SOC1-like clade genes in its roots. We confirmed that two SOC1-like genes, PgMADS41 and PgMADS44, bind to expansion gene promoters (PgEXLB5 and PgEXPA13), which contribute to root growth, and to SE-4, CYP716A52v2-4, and β-AS-13 promoters, which participate in ginsenoside Ro biosynthesis. These two genes were found to increase lateral root number and main root length in transgenic Arabidopsis thaliana by improving AtEXLA1, AtEXLA3, AtEXPA5, and AtEXPA6 gene expression. As a non-phytohormone regulatory tool, Ro can stimulate adventitious root growth by influencing their expression and ginsenoside accumulation. Our study provides new insights into the coordinated regulatory function of SOC1-like clade genes in Panax root development and triterpenoid accumulation, paving the way towards understanding root formation and genetic improvement in Panax.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.123648 | DOI Listing |
Microb Ecol
January 2025
Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru.
Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Center for Quantitative Genetics and Genomics, Aarhus University, Slagelse, Denmark.
Early root traits, particularly total root length, are heritable and show positive genetic correlations with biomass yield in perennial ryegrass; incorporating them into breeding programs can enhance genetic gain. Perennial ryegrass (Lolium perenne L.) is an important forage grass widely used in pastures and lawns, valued for its high nutritive value and environmental benefits.
View Article and Find Full Text PDFPlant Mol Biol
January 2025
Department of Agricultural and Environmental Sciences, University of Milan, via Celoria 2, 20133, Milan, Italy.
OsMAIL1 encodes for a rice protein of the Plant Mobile Domain (PMD) family and is strongly upregulated during floral induction in response to the presence of the florigens Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1). Although OsMAIL1 expression depends on the florigens, osmail1 null mutants do not show delay in flowering time, rather OsMAIL1 participates in ensuring successful reproduction. Indeed, when day temperatures reach 35 °C (7 °C higher than standard greenhouse conditions), osmail1 mutants show increased sterility due to abnormal pistil development with about half of the plants developing three styles topped by stigmas.
View Article and Find Full Text PDFInt J Legal Med
January 2025
Institute for Legal Medicine, Faculty of Medicine, Saarland University, Campus Homburg, Building 49.1, Kirrberger Straße 100, 66421, Homburg/Saar, Germany.
Aortic regurgitation is a common valve disease and can be caused by delineated findings such as fenestrations or hardly discernible alterations of the aortic root geometry. Therefore, aortic regurgitation can be a challenging diagnosis during an autopsy. Cardiac surgeons, however, are confronted with comparable problems during surgery and have developed a refined knowledge of the anatomy of the aortic root including its geometry.
View Article and Find Full Text PDFWater Environ Res
January 2025
Agrobiology Laboratory, Institute of Agriculture, Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Lithuania.
A comparative pot study was performed to assess the toxic effects of copper (Cu) and/or zinc (Zn) contaminated wastewater (WW) irrigation on the growth, physiology, and element concentration of wheat grown for two months. The treatments included irrigation with uncontaminated wastewater (WW) as control, Cu-contaminated WW (CuWW), Zn-contaminated WW (ZnWW), and Cu + Zn contaminated WW (CuZnWW) in a completely randomized design. Compared to ZnWW, irrigation with CuWW or CuZnWW had severe effects on growth, physiology, and mineral absorption by wheat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!