Self-assembled nanocomposites of carboxymethyl β-dextran/protamine sulfate for enhanced chemotherapeutic drug sensitivity of triple-negative breast cancer by autophagy inhibition via a ternary collaborative strategy.

Int J Biol Macromol

CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 First North Road, Zhongguancun, Beijing 100190, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China. Electronic address:

Published: April 2023

Drug resistance in cancer chemotherapy is a major confounding factor affecting the effectiveness of chemotherapeutic agents, thereby leading to poor clinical outcomes. Most chemotherapeutic drugs can induce protective autophagy and increase the resistance of tumors to chemotherapeutic drugs and reduce effective drug delivery to tumor cells. In this study, a tri-drug nanocomposite (NP) delivery system was devised using carboxymethyl β-dextran (CMD) and protamine sulfate (PS), two natural materials with good bio-compatibility. They were designed to carry the chemotherapeutic drug docetaxel (DTX), the autophagy inhibitor chloroquine (CQ), and Atg5 siRNA to cancer cells. The CQ + DTX + Atg5 siRNA NPs was driven by electrostatic interaction and self-assembly methods. The breast cancer cell line MDA-MB-231 was used for both cell culture and establishing mouse xenograft model. Our findings demonstrated that CQ and Atg5 siRNA encapsulated in NPs could enhance the sensitivity of tumor cells to DTX. The NPs exhibited remarkable considerable therapeutic effects for treating triple-negative breast cancer (TNBC) and good biosafety. Therefore, we established a novel multifunctional nanoplatform based on CMD and PS that enhances chemotherapeutic drug sensitivity through an autophagy inhibition strategy, providing new opportunities to overcome conventional drug resistance and enhance therapeutic efficiency against TNBC.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.123663DOI Listing

Publication Analysis

Top Keywords

chemotherapeutic drug
12
breast cancer
12
drug sensitivity
8
triple-negative breast
8
autophagy inhibition
8
drug resistance
8
chemotherapeutic drugs
8
tumor cells
8
atg5 sirna
8
chemotherapeutic
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!