Background: In pregnancy, choline is deemed an essential nutrient and carnitine needs are increased, but amounts remain undefined.
Objectives: We aimed to measure choline and total dietary protein and dairy protein intake from food and supplements across pregnancy and the response to intake by profiling choline and carnitine metabolites across pregnancy and in cord blood.
Methods: An exploratory analysis of choline and protein intake from 3-d diet records and measures of 36 serum choline and carnitine metabolites in early (12-17 wk) and late (36-38 wk) pregnancy was conducted in participants from the Be Healthy in Pregnancy study randomized to high dairy protein+walking exercise or usual care. Metabolites were measured in fasted maternal and cord serum using multisegment injection-capillary electrophoresis-mass spectrometry. Mixed ANOVA adjusted for body mass index was performed for comparison of metabolites across pregnancy and between intervention and control.
Results: In 104 participants, the median (Q1, Q3) total choline intake was 347 (263, 427) mg/d in early and 322 (270, 437) mg/d in late pregnancy. Only ∼20% of participants achieved the recommended adequate intake (450 mg/d) and ∼10% consumed supplemental choline (8-200 mg/d). Serum-free choline (μmol/L) was higher in late compared with early pregnancy [12.9 (11.4, 15.1) compared with 9.68 (8.25, 10.61), P < 0.001], but choline downstream metabolites were similar across pregnancy. Serum carnitine [10.3 (9.01, 12.2) compared with 15.9 (14.1, 17.9) μmol/L, P < 0.001] and acetylcarnitine [2.35 (1.92, 2.68) compared with 3.0 (2.56, 3.59), P < 0.001] were significantly lower in late pregnancy. High cord:maternal serum metabolite ratios were found in most measured metabolites.
Conclusions: Despite inadequate choline intake, serum-free choline was elevated in late pregnancy and enriched in cord blood compared with maternal serum. Serum carnitine declined in late pregnancy despite a high protein diet. The higher cord:maternal concentrations in choline and carnitine metabolites suggest active uptake in late pregnancy, reflecting the importance of these circulating metabolites in fetal development. This trial was registered at clinicaltrials.gov as NCT01689961.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tjnut.2023.02.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!