Background: IPAF (ICE-protease Activating Factor) is a nucleotide-binding/leucine-rich repeat (NLR) protein known as the cysteine-associated recruitment domain 12 (CARD12). Previous studies only discuss the role of IPAF inflammasomes in specific tumors. The role of IPAF inflammasomes in pan-cancer is still unclear. Therefore, we performed a comprehensive analysis of IPAF inflammasome in 33 tumors.

Methods: We used databases like The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) from the UCSC XENA (http://xena.ucsc.edu/) to retrieve and analyze gene expression. The influence of IPAF inflammasome on the prognosis of tumor patients was analyzed using univariate Cox regression analysis and Kaplan-Meier survival analysis. Furthermore, we conducted the following analysis: Single-sample gene set enrichment analysis, single-cell level functional state analysis, single-cell sequencing, immune cell infiltration analysis, and tumor immune dysfunction and exclusion (TIDE) score.

Results: First, the differential expression of IPAF inflammasome-related genes (IPAF-RGs) in 33 tumors were analyzed. The results revealed that IPAF-RGs were significantly and differentially expressed in eight tumors. The prognostic significance of IPAF inflammasome scores was different in different tumors. A positive correlation was observed between IPAF inflammasomes scores and CD8+ T cells in most tumors. Further analysis revealed that IPAF inflammasome might affect tumor immunity mainly by mediating effector T cell recruitment via the expression of chemokines such as CXCL9, CXCL10, and CCL5. The analysis of TIDE and IPAF inflammasome scores revealed a significant negative correlation between IPAF inflammasome and TIDE scores in 11 tumors.

Conclusion: A pan-cancer analysis of IPAF inflammasome in various tumors was performed. The results highlight the potential value of IPAF inflammasome in response to immunotherapy in patients and provide a new direction for future immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106622DOI Listing

Publication Analysis

Top Keywords

ipaf inflammasome
32
ipaf inflammasomes
16
ipaf
14
analysis
10
inflammasomes pan-cancer
8
single-cell sequencing
8
role ipaf
8
analysis ipaf
8
inflammasome
8
analysis single-cell
8

Similar Publications

Background: To address knowledge gaps, this study aimed to investigate the involvement of inflammasomes in the etiology of azoospermia. This study focused on the gene expression of key inflammasome components, including , and .

Methods: We analyzed gene expression in blood and testicular tissue from patients with obstructive azoospermia (OA) and non-obstructive azoospermia (NOA).

View Article and Find Full Text PDF

NLR family, apoptosis inhibitory proteins (NAIPs) detect bacterial flagellin and structurally related components of bacterial type III secretion systems (T3SS), and recruit NLR family CARD domain containing protein 4 (NLRC4) and caspase-1 into an inflammasome complex that induces pyroptosis. NAIP/NLRC4 inflammasome assembly is initiated by the binding of a single NAIP to its cognate ligand, but a subset of bacterial flagellins or T3SS structural proteins are thought to evade NAIP/NLRC4 inflammasome sensing by not binding to their cognate NAIPs. Unlike other inflammasome components such as NLRP3, AIM2, or some NAIPs, NLRC4 is constitutively present in resting macrophages and not known to be induced by inflammatory signals.

View Article and Find Full Text PDF

Inflammasome protein scaffolds the DNA damage complex during tumor development.

Nat Immunol

November 2024

Division of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.

Article Synopsis
  • Inflammasome proteins, like NLRC4, play a role in controlling inflammation and cell death, but also impact diseases in ways other than their typical functions.
  • Research shows that NLRC4 can help reduce tumor development in a specific mouse model, independently of other inflammasome proteins.
  • NLRC4 works with a complex involved in DNA damage response, promoting mechanisms that activate checkpoint proteins to prevent cancer by managing DNA damage effectively.*
View Article and Find Full Text PDF
Article Synopsis
  • Inflammasomes are essential for innate immunity, detecting pathogens, and triggering inflammation, with NLRC4 playing a key role in recognizing and eliminating intracellular threats through its associated proteins, specifically neuronal apoptosis inhibitory proteins (NAIPs).
  • This study highlights the importance of ATG16L2 in the activation of the NLRC4 inflammasome, showing that its absence reduces the inflammasome's effectiveness in macrophages and causes impaired immune response.
  • ATG16L2 interacts with NAIPs and enhances their connection to NLRC4, and research on knockout mice reveals that ATG16L2 is crucial for clearing infections and improving survival rates following Salmonella typhimurium infection.
View Article and Find Full Text PDF

NLRs constitute a large, highly conserved family of cytosolic pattern recognition receptors that are central to health and disease, making them key therapeutic targets. NLRC5 is an enigmatic NLR with mutations associated with inflammatory and infectious diseases, but little is known about its function as an innate immune sensor and cell death regulator. Therefore, we screened for NLRC5's role in response to infections, PAMPs, DAMPs, and cytokines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!