Objectives: Colony-stimulating factor 1 (CSF1), also known as macrophage colony-stimulating factor, has been shown to be associated with risk of ischemic stroke in conventional epidemiological study. We performed a Mendelian randomization analysis to evaluate the effects of genetically predicted circulating CSF1 levels on stroke and carotid intima-media thickness (cIMT).

Methods: Genetic variants robustly associated with CSF1 levels, located in the vicinity of the CSF1 gene (cis), were used as instruments for CSF1 levels. Genetic association estimates for ischemic stroke and its subtypes, intra-cerebral hemorrhage (ICH), and cIMT were obtained from MEGASTROKE (60,341 cases and 454,450 controls), ISGC (1,545 cases and 1,481 controls), and UK Biobank (22,179 individuals), respectively.

Results: Genetically predicted higher CSF1 levels was significantly associated with a higher risk of any ischemic stroke, large artery stroke (LAS) and cardioembolic stroke (CES), but not with small vessel stroke (SVS) and ICH. The odds ratios (ORs) per genetically predicted one standard deviation (SD) increase in circulating CSF1 levels were 1.11 (95% CI 1.04-1.17) for any ischemic stroke, 1.23 (95% CI 1.07-1.42) for LAS, 1.18 (95% CI 1.05-1.33) for CES, 1.07 (95% CI 0.94-1.21) for SVS, and 1.15 (95% CI 0.73-1.83) for ICH. Similarly, we also found that genetically predicted higher CSF1 levels were associated with higher cIMT, as a measure of subclinical atherosclerosis (cIMT, β 0.016, 95% CI, 0.004-0.029).

Conclusions: This study provides evidence that genetically predicted higher CSF1 levels was associated with higher risk of any ischemic stroke, LAS, and CES. Whether targeting CSF1 or its receptors can reduce the risk of ischemic stroke needs further study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2023.107050DOI Listing

Publication Analysis

Top Keywords

csf1 levels
28
ischemic stroke
24
genetically predicted
20
risk ischemic
16
colony-stimulating factor
12
predicted higher
12
higher csf1
12
levels associated
12
associated higher
12
stroke
11

Similar Publications

Background: Although immunotherapy has achieved great progress in advanced triple-negative breast cancer (TNBC), there are still numerous patients who do not benefit from immunotherapy. Therefore, identification of the key molecule that induces immune escape and clarification of its specific mechanism in TNBC are urgently needed.

Methods: In this research, single cell sequencing and bulk sequencing were conducted for biomarker screening.

View Article and Find Full Text PDF

Knee osteoarthritis contributes substantially to worldwide disability. Post-traumatic osteoarthritis (PTOA) develops secondary to joint injury, such as ligament rupture, and there is increasing evidence suggesting a key role for inflammation in the aetiology of PTOA and associated functional deficits. Colony stimulating factor 1 receptor (CSF1-R) has been implicated in the pathogenesis of musculoskeletal degeneration following anterior cruciate ligament (ACL) injury.

View Article and Find Full Text PDF
Article Synopsis
  • Axatilimab is a monoclonal antibody that targets CSF-1R, approved for treating chronic graft-versus-host disease (cGVHD) and being researched for other conditions like idiopathic pulmonary fibrosis.
  • A study involving 325 participants investigated the drug's pharmacokinetics (PK) and pharmacodynamics (PD), showing that it reduces certain immune cell levels, which affects enzyme levels in the bloodstream.
  • The final PK/PD model, based on complex math involving differential equations, identified several factors influencing axatilimab's effectiveness and helped shape dosing strategies for cGVHD patients.
View Article and Find Full Text PDF

Background: Although immune cells play a critical role in lipid metabolism and inflammation regulation in patients with non-alcoholic steatohepatitis (NASH), the specific immune cells involved and associated genes remain unclear.

Methods: We identified differential immune cell profiles between normal liver and NASH specimens using the CIBERSORT algorithm. Next, we conducted a weighted gene co-expression network analysis (WGCNA) to identify genes highly correlated with these immune cells in NASH.

View Article and Find Full Text PDF

Background And Aims: Colony-stimulating factor 1 (CSF1) is a growth factor secreted by dorsal root ganglia (DRG) neurons important for DRG macrophages and spinal cord (SC) microglia injury-induced proliferation and activation, specifically released after spared nerve injury (SNI). In this study, we investigated if SNI-induced CSF1 expression and perineuronal rings of macrophages around mouse DRG neurons vary between L3-L5 DRG and with the neuronal type, and if the CSF1 neuronal projections at the SC dorsal horns were associated with an increased microglial number in the corresponding laminae.

Methods: Seven days after surgery, L3-L5 DRG as well as their corresponding segments at the SC level were collected, frozen, and cut.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!