Spiking model neurons can be set up to respond selectively to specific spatio-temporal spike patterns by optimization of their input weights. It is unknown, however, if existing synaptic plasticity mechanisms can achieve this temporal mode of neuronal coding and computation. Here it is shown that changes of synaptic efficacies which tend to balance excitatory and inhibitory synaptic inputs can make neurons sensitive to particular input spike patterns. Simulations demonstrate that a combination of Hebbian mechanisms, hetero-synaptic plasticity and synaptic scaling is sufficient for self-organizing sensitivity for spatio-temporal spike patterns that repeat in the input. In networks inclusion of hetero-synaptic plasticity that depends on the pre-synaptic neurons leads to specialization and faithful representation of pattern sequences by a group of target neurons. Pattern detection is robust against a range of distortions and noise. The proposed combination of Hebbian mechanisms, hetero-synaptic plasticity and synaptic scaling is found to protect the memories for specific patterns from being overwritten by ongoing learning during extended periods when the patterns are not present. This suggests a novel explanation for the long term robustness of memory traces despite ongoing activity with substantial synaptic plasticity. Taken together, our results promote the plausibility of precise temporal coding in the brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9977062 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1010876 | DOI Listing |
Elife
December 2024
Department of Neuroscience, Columbia University, New York, United States.
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior.
View Article and Find Full Text PDFJ Vet Diagn Invest
December 2024
Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
Evaluating stress in shelter and institutionally owned cats is important to help guide improvements in their welfare. Welfare assessments often focus on behavior metrics and physiologic measurements, such as systemic cortisol levels. The gold standard for measuring acute stress is serum cortisol; measuring cortisol in feces and urine gives reliable time-integrated assessments of acute stress.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Oscar Langendorff Institute of Physiology, University Medical Centre Rostock, Rostock, Germany. Electronic address:
Background: Deep brain stimulation (DBS) targeting globus pallidus internus (GPi) is a recognised therapy for drug-refractory dystonia. However, the mechanisms underlying this effect are not fully understood. This study explores how pallidal DBS alters spatiotemporal pattern formation of neuronal dynamics within the cerebellar cortex in a dystonic animal model, the dt hamster.
View Article and Find Full Text PDFJ Chem Inf Model
December 2024
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Spain.
Previous works show the key role of electrostatics in the SARS-CoV-2 virus in aspects such as virus-cell interactions or virus inactivation by ionic surfactants. Electrostatic interactions depend strongly on the variant since the charge of the Spike protein (responsible for virus-environment interactions) evolved across the variants from the highly negative Wild Type (WT) to the highly positive Omicron variant. The distribution of the charge also evolved from diffuse to highly localized.
View Article and Find Full Text PDFCell Rep
December 2024
Department of Psychiatry and Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA. Electronic address:
The posterior "tail" region of the striatum receives dense innervation from sensory brain regions and is important for behaviors that require sensorimotor integration. The output neurons of the striatum, D1 and D2 striatal projection neurons (SPNs), which make up the direct and indirect pathways, are thought to play distinct functional roles, although it remains unclear if these neurons show cell-type-specific differences in their response to sensory stimuli. Here, we examine the strength of synaptic inputs onto D1 and D2 SPNs following the stimulation of upstream auditory pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!