A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Entrainment and Enrichment of Microplastics in Ice Formation Processes: Implications for the Transport of Microplastics in Cold Regions. | LitMetric

Entrainment and Enrichment of Microplastics in Ice Formation Processes: Implications for the Transport of Microplastics in Cold Regions.

Environ Sci Technol

Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada.

Published: February 2023

Sea ice can serve as a temporary sink for microplastics (MPs), and thus, it too can function as a secondary source of and transport medium for MPs. This study aimed to explore the effect of various MP properties and environmental characteristics on the entrainment and enrichment of MPs in ice under varying turbulence conditions. It was found that high rotation speed in freshwater distinctively enhanced the entrainment of hydrophobic MPs in ice, this being attributable to the combined effects of frazil ice and air bubbles. The hydrophobic nature of these MPs caused them to be attracted to the water/air or water/ice interface. However, in saline water, high turbulence inhibited the entrainment of all of the MP types under study. The ice crystals formed a loose structure in saline water instead of congealing, and this allowed the exchange of MPs between ice and water, leading to the rapid expulsion of MPs from the ice. The enrichment factors of all the MPs under study increased in calm saline water compared to in calm freshwater. The results revealed that the entrainment and enrichment of MPs in ice can be critical pathways affecting their fate in cold regions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c09340DOI Listing

Publication Analysis

Top Keywords

mps ice
20
entrainment enrichment
12
saline water
12
ice
9
mps
9
cold regions
8
mps study
8
enrichment mps
8
entrainment
5
enrichment microplastics
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!