Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Effective therapeutic approaches to overcome the heterogeneous pro-inflammatory and inhibitory extracellular matrix (ECM) microenvironment are urgently needed to achieve robust structural and functional repair of severely wounded fibrocartilaginous tissues. Herein we developed a dynamic and multifunctional nanohybrid peptide hydrogel (NHPH) through hierarchical self-assembly of peptide amphiphile modified with biodegradable two-dimensional nanomaterials with enzyme-like functions. NHPH is not only injectable, biocompatible, and biodegradable but also therapeutic by catalyzing the scavenging of pro-inflammatory reactive oxygen species and promoting ECM remodeling. In addition, our NHPH method facilitated the structural and functional recovery of the intervertebral disc (IVD) after severe injuries by delivering pro-regenerative cytokines in a sustained manner, effectively suppressing immune responses and eventually restoring the regenerative microenvironment of the ECM. In parallel, the NHPH-enhanced nucleus pulposus cell differentiation and pain reduction in a rat nucleotomy model further validated the therapeutic potential of NHPH. Collectively, our advanced nanoscaffold technology will provide an alternative approach for the effective treatment of IVD degeneration as well as other fibrocartilaginous tissue injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.2c11441 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!