π-interactions are an important motif in chemical and biochemical systems. However, due to their anisotropic electron densities and complex balance of intermolecular interactions, aromatic molecules represent an ongoing challenge for accurate and transferable force field development. Historically, force fields for aromatics have not exhibited good accuracy with respect to bulk properties or have only been used to study gas-phase dimers. Using benzene as a proof of concept, herein we show how our own MASTIFF force field incorporates an atomically anisotropic description of intermolecular interactions to yield an accurate and robust model for aromatic interactions irrespective of phase. Compared to existing models, the MASTIFF benzene force field not only is accurate for liquid phase properties but also offers transferability to the gas and solid phases. Additionally, we introduce a computationally efficient OpenMM plugin which enables customizable anisotropic intermolecular functional forms and which can be generically used in any MD simulation where a model for nonspherical atomic features is required. Overall, our results demonstrate the importance of atomic-level anisotropy in enabling next-generation force field development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.2c07244 | DOI Listing |
Chem Sci
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory Oak Ridge TN 37830 USA
The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.
View Article and Find Full Text PDFJ Vib Control
January 2025
Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada.
Magnetorheological (MR) fluid (MRF) dampers, serving as fail-safe semi-active devices, exhibit nonlinear hysteresis characteristics, emphasizing the necessity for accurate modeling to formulate effective control strategies in smart systems. This paper introduces a novel stop operator-based Prandtl-Ishlinskii (PI) model, featuring a reduced parameter set (seven), designed to estimate the nonlinear hysteresis properties of a large-scale bypass MRF damper with variable stiffness capabilities under varying applied current. With only seven parameters, the model realizes current, displacement, and rate dependencies.
View Article and Find Full Text PDFMater Today Bio
February 2025
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
Natural teeth fulfill functional demands by their heterogeneity. The composition and hydroxyapatite (HAp) nanostructured orientation of enamel differ from those of dentin. However, mimicking analogous materials still exhibit a significant challenge.
View Article and Find Full Text PDFACS Omega
January 2025
Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.
The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.
View Article and Find Full Text PDFNat Astron
November 2024
NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA.
The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus's magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!