Lysin motif (LysM)-receptor-like kinase (RLK) and leucine-rich repeat (LRR)-RLK mediated signaling play important roles in the development and regulation of root nodule symbiosis in legumes. The availability of water and nutrients in the soil is a major limiting factor affecting crop productivity. Plants of the Leguminosae family form a symbiotic association with nitrogen-fixing Gram-negative soil bacteria, rhizobia for nitrogen fixation. This symbiotic relationship between legumes and rhizobia depends on the signal exchange between them. Plant receptor-like kinases (RLKs) containing lysin motif (LysM) and/or leucine-rich repeat (LRR) play an important role in the perception of chemical signals from rhizobia for initiation and establishment of root nodule symbiosis (RNS) that results in nitrogen fixation. This review highlights the diverse aspects of LysM-RLK and LRR receptors including their specificity, functions, interacting partners, regulation, and associated signaling in RNS. The activation of LysM-RLKs and LRR-RLKs is important for ensuring the successful interaction between legume roots and rhizobia. The intracellular regions of the receptors enable additional layers of signaling that help in the transduction of signals intracellularly. Additionally, symbiosis receptor-like kinase (SYMRK) containing the LRR motif acts as a co-receptor with Nod factors receptors (LysM-RLK). Cleavage of the malectin-like domain from the SYMRK ectodomain is a mechanism for controlling SYMRK stability. Overall, this review has discussed different aspects of legume receptors that are critical to the perception of signals from rhizobia and their subsequent role in creating the mutualistic relationship necessary for nitrogen fixation. Additionally, it has been discussed how crucial it is to extrapolate the knowledge gained from model legumes to crop legumes such as chickpea and common bean to better understand the mechanism underlying nodule formation in crop legumes. Future directions have also been proposed in this regard.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00425-023-04090-7 | DOI Listing |
Front Plant Sci
January 2025
Heilongjiang Green Food Science Research Institute, Northeast Agricultural University, Harbin, Heilongjiang, China.
Brassinosteroids (BRs) are key phytohormones influencing soybean development, yet their role in symbiosis remains unclear. Here, the RNA-Seq was used to identify important gene associated with BRs and symbiotic nitrogen fixation, and the function of candidate gene was verified by transgenic hairy roots. The result shows that the RNA-Seq analysis was conducted in which BR signaling was found to suppress nodule formation and many DEGs enriched in immunity-related pathways.
View Article and Find Full Text PDFSci Rep
January 2025
Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, University of Vienna, Wien, Austria.
Methanogenic archaea (methanogens) possess fascinating metabolic characteristics, such as the ability to fix molecular nitrogen (N). Methanogens are of biotechnological importance due to the ability to produce methane (CH) from molecular hydrogen (H) and carbon dioxide (CO) and to excrete proteinogenic amino acids. This study focuses on analyzing the link between biological methanogenesis and amino acid excretion under N-fixing conditions.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
The interplay between root exudates and rhizobacteria is essential for enhancing agricultural productivity. Herein, the impacts of cerium dioxide nanomaterials (CeO NMs) on these interactions in soybean plants were investigated. Following 3-5 weeks of exposure to 5 mg·kg CeO NMs, the composition of root exudates changed over time, with isoflavone levels increasing by 6.
View Article and Find Full Text PDFPeerJ
January 2025
College of Agronomy, Guizhou University, Guiyang, Guizhou, China.
Background: is an important cash crop in southwestern China, with soil organic carbon playing a vital role in soil fertility, and microorganisms contributing significantly to nutrient cycling, thus both of them influencing tea tree growth and development. However, existing studies primarily focus on soil organic carbon, neglecting carbon fractions, and the relationship between soil organic carbon fractions and microbial communities is unclear. Consequently, this study aims to clarify the impact of different tea planting durations on soil organic carbon fractions and microbial communities and identify the main factors influencing microbial communities.
View Article and Find Full Text PDFBMC Genomics
January 2025
Laboratory of Artificial Intelligence Applied to Bioinformatics, Professional and Technical Education Sector - SEPT, UFPR, Curitiba, Paraná, Brazil.
Background: Diazotrophs carry out biological nitrogen fixation (BNF) using the nitrogenase enzyme complex (NEC), which relies on nitrogenase encoded by nif genes. Horizontal gene transfer (HGT) and gene duplications have created significant diversity among these genes, making it challenging to identify potential diazotrophs. Previous studies have established a minimal set of Nif proteins, known as the Nif core, which includes NifH, NifD, NifK, NifE, NifN, and NifB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!