Carbon fiber ankle-foot orthoses in impaired populations: A systematic review.

Prosthet Orthot Int

Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, USA.

Published: October 2023

Background: Carbon fiber is increasingly being used in ankle-foot orthoses (AFOs). Orthotic devices and carbon fiber-containing devices have been shown to reduce pain and improve function in multiple patient populations. Although the number of publications and interest in carbon fiber AFOs is growing, a systematic evaluation of their effects is lacking.

Objectives: To characterize the effects of carbon fiber AFOs in impaired individuals.

Study Design: Qualitative systematic review.

Methods: Systematic searches in PubMed, Embase, CINAHL, and Cochrane Library were completed in July 2020. The results were deduplicated, screened, and assessed for quality by independent reviewers. Articles were excluded if they had nonhuman subjects, only healthy subjects, or included active control systems, motors, or other power sources.

Results: Seventy-eight articles were included in the qualitative synthesis. Most articles were of low to moderate methodological quality. Five commonly used devices were identified: the Intrepid Dynamic Exoskeletal Orthosis, ToeOff, WalkOn, Neuro Swing, and Chignon. The devices have unique designs and are associated with specific populations. The Intrepid Dynamic Exoskeletal Orthosis was used in individuals with lower-limb trauma, the Neuro Swing and ToeOff in individuals with neurological disorders, the Chignon in individuals with hemiplegia and stroke, and the WalkOn in people with hemiplegia and cerebral palsy. Each device produced favorable outcomes in their respective populations of interest, such as increased walking speed, reduced pain, or improved balance.

Conclusions: The mechanical characteristics and designs of carbon fiber AFOs improve outcomes in the populations in which they are most studied. Future literature should diligently report patient population, device used, and fitting procedures.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PXR.0000000000000217DOI Listing

Publication Analysis

Top Keywords

carbon fiber
20
fiber afos
12
ankle-foot orthoses
8
intrepid dynamic
8
dynamic exoskeletal
8
exoskeletal orthosis
8
neuro swing
8
carbon
6
populations
5
fiber ankle-foot
4

Similar Publications

Metalgel Fiber with Excellent Electrical and Mechanical Properties.

ACS Appl Mater Interfaces

January 2025

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.

With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure.

View Article and Find Full Text PDF

Desired Color Diversity of Carbon Fiber with Excellent Environmental Super-Durability and Remarkable Flame Retardancy.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, P. R. China.

Carbon fiber (CF) has been widely used in aerospace, military, infrastructure, sports, and leisure fields owing to its excellent mechanical properties, superior corrosion and friction resistances, excellent thermal stability, and lightweight. However, the ultrablack appearance derived from the extremely strong absorption of light throughout the entire visible region makes it difficult to satisfy the aesthetic and pleasurable demands of the colorful world and limits their applications in a broader field. Herein, inspired by the , a double-layer ultrathin AlO/TiO composite structure was fabricated on CFs by the atomic layer deposition method.

View Article and Find Full Text PDF

Improving the Long-Term Mechanical Properties of Thermoplastic Short Natural Fiber Compounds by Using Alternative Matrices.

Biomimetics (Basel)

January 2025

Macromolecular Chemistry and New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands.

Wood plastic composites (WPCs) offer a means to reduce the carbon footprint by incorporating natural fibers to enhance the mechanical properties. However, there is limited information on the mechanical properties of these materials under hostile conditions. This study evaluated composites of polypropylene (PP), polystyrene (PS), and polylactic acid (PLA) processed via extrusion and injection molding.

View Article and Find Full Text PDF

Polymer matrix composites are popular for their lightweight and high strength. Poly (methyl methacrylate) (PMMA), known for its transparency, can be toughened with polyurethane (PU) to expand its applications. This study further strengthened PU-PMMA by adding carbon fiber powder from offcut fabrics (oCFP), enhancing mechanical and adhesion properties.

View Article and Find Full Text PDF

In the realm of zinc-air batteries, high bifunctional catalytic efficacy is intimately tied to the evaluation of catalysts. Consequently, the pursuit of proficient bifunctional catalysts that can efficiently catalyze both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) remains a paramount objective in this research area. In this study, the spiny cobalt tetroxide (CoO) encapsulated hollow carbon spheres (HCSs) are constructed by anchoring CoO onto HCS via hydrothermal or annealing treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!