Photoinduced adsorption of oligonucleotides on polyvinyl chloride films containing malachite green derivative.

Soft Matter

Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.

Published: March 2023

DNA adsorption on the micrometer scale in a simple and cost-effective manner has received considerable interest. We prepared a film by casting an organic solvent containing polyvinyl chloride and a malachite green derivative, which can be photoionized to afford a cationic moiety for interaction with DNA. In this article, we report photoinduced oligonucleotide adsorption on a film that offers spatial and temporal control over oligonucleotide adsorption. Fluorescence microscopy was used to observe the oligonucleotide adsorption. Oligonucleotides of various sequences and lengths were also examined. UV irradiation using a photomask having 100 μm-diameter holes promoted the oligonucleotide adsorption on the film, whereas there was hardly any oligonucleotide adsorbed on the non-irradiated area. We found that the nucleobase contributed to the adsorption and part of the anchor in the oligonucleotide chain was responsible for the adsorption on the film.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2sm01163hDOI Listing

Publication Analysis

Top Keywords

oligonucleotide adsorption
16
adsorption film
12
adsorption oligonucleotides
8
polyvinyl chloride
8
malachite green
8
green derivative
8
adsorption
7
oligonucleotide
6
photoinduced adsorption
4
oligonucleotides polyvinyl
4

Similar Publications

Triple Helix Molecular Switch Cascade Multiple Signal Amplification Strategies for Ultrasensitive Chloramphenicol Detection.

Anal Chem

December 2024

Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan410082, China.

Article Synopsis
  • A novel self-powered biosensor has been created to detect chloramphenicol (CAP) using a unique triple helix molecular switch (THMS) and DNA walkers for enhanced signal amplification.
  • The biosensor employs a CAP aptamer that binds to CAP in the presence of the target, triggering a sequence of signal releases and structural changes in the DNA walker system.
  • With a detection limit of 0.012 fM, this biosensor demonstrates high sensitivity for CAP detection in milk, along with excellent selectivity, stability, and reproducibility.
View Article and Find Full Text PDF

Interfacial interactions between DNA and polysaccharide-coated magnetic nanoparticles: Insight from simulations and experiments.

Colloids Surf B Biointerfaces

February 2025

Theoretical & Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece. Electronic address:

In this work we examine the structural and energetic stability and the interactions between dextran-coated magnetic nanoparticles (MNPs) and a DNA oligonucleotide at ionic strength conditions that are relevant to physiological gene delivery processes. All-atom Molecular Dynamics simulations provided information at the atomic-level regarding the mechanisms responsible for the physical adsorption of Dextran on the magnetic surface and the conditions under which a successful DNA-Dextran complexation can be accomplished. Coulombic interactions were found to play the main role for the formation of the Dextran interfacial layer onto the magnetic surface while hydrogen bonding between the Dextran molecules enhanced the structural integrity of this layer.

View Article and Find Full Text PDF

SERS-Based Aptamer Sensing Strategy for Diabetes Biomarker Detection.

Anal Chem

December 2024

Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.

Accurate detection of glucose and insulin is crucial for early diagnosis, classification, and timely prevention of diabetes. In this study, we present a novel surface-enhanced Raman scattering (SERS) aptasensor for glucose and insulin detection. The SERS aptasensor is composed of gold bipyramidal nanoparticles (Au BPs), SH-aptamer-methylene blue (MB), and thiolated polyethylene glycol (SH-PEG).

View Article and Find Full Text PDF

Due to their ultra-high sensitivity, solution-gated graphene-based field-effect transistors (SG-GFET) have been proposed for applications in bio-sensing. However, challenges regarding the functionalization of GFETs have prevented their applications in clinical diagnostics so far. Here GFET sensors based on van der Waals (vdW) heterostructures of single-layer graphene layered with a molecular ≈1 nm thick carbon nanomembrane (CNM) are presented.

View Article and Find Full Text PDF

Ambient ionization mass spectrometry (AIMS) allows rapid analysis of targets, while its overall selectivity is somewhat limited due to the lack of chromatographic separation. Recently, magnetic blade spray (MBS) has enhanced AIMS by incorporating immunomagnetic beads instead of the traditional coated blade spray (CBS) coating, thereby improving selectivity and sensitivity by targeted analyte detection and reducing background interference. In this study, an aptamer-functionalized and nucleic acid dye (GelRed)-loaded MS probe (AGMP) was developed and employed with MBS-based miniature mass spectrometer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!