A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modulating the Energetics of C-H Bond Activation in Methane by Utilizing Metalated Porphyrinic Metal-Organic Frameworks. | LitMetric

In recent years, much effort has been directed toward utilizing metal-organic frameworks (MOFs) for activating C-H bonds of light alkanes. The energy demanding steps involved in the catalytic pathway are the formation of metal-oxo species and the subsequent cleavage of the C-H bonds of alkanes. With the intention of exploring the tunability of the activation barriers involved in the catalytic pathway of methane hydroxylation, we have employed density functional theory to model metalated porphyrinic MOFs (MOF-525(M)). We find that the heavier congeners down a particular group have high exothermic oxo-formation enthalpies Δ and hence are associated with low NO activation barriers. Independent analyses of activation barriers and structure-activity relationship leads to the conclusion that MOF-525(Ru) and MOF-525(Ir) can act as an effective catalysts for methane hydroxylation. Hence, Δ has been found to act as a guide, in the first place, in choosing the optimum catalyst for methane hydroxylation from a large set of available systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.2c03891DOI Listing

Publication Analysis

Top Keywords

activation barriers
12
methane hydroxylation
12
metalated porphyrinic
8
metal-organic frameworks
8
c-h bonds
8
involved catalytic
8
catalytic pathway
8
modulating energetics
4
energetics c-h
4
c-h bond
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!