Adverse Outcome Pathways (AOPs) establish a connection between a molecular initiating event (MIE) and an adverse outcome. Detailed understanding of the MIE provides the ideal data for determining chemical properties required to elicit the MIE. This study utilized high-throughput screening data from the ToxCast program, coupled with chemical structural information, to generate chemical clusters using three similarity methods pertaining to nine MIEs within an AOP network for hepatic steatosis. Three case studies demonstrate the utility of the mechanistic information held by the MIE for integrating biological and chemical data. Evaluation of the chemical clusters activating the glucocorticoid receptor identified activity differences in chemicals within a cluster. Comparison of the estrogen receptor results with previous work showed that bioactivity data and structural alerts can be combined to improve predictions in a customizable way where bioactivity data are limited. The aryl hydrocarbon receptor (AHR) highlighted that while structural data can be used to offset limited data for new screening efforts, not all ToxCast targets have sufficient data to define robust chemical clusters. In this context, an alternative to additional receptor assays is proposed where assays for proximal key events downstream of AHR activation could be used to enhance confidence in active calls. These case studies illustrate how the AOP framework can support an iterative process whereby toxicity testing and chemical structure can be combined to improve toxicity predictions. assays can inform the development of structural alerts linking chemical structure to toxicity. Consequently, structurally related chemical groups can facilitate identification of assays that would be informative for a specific MIE. Together, these activities form a virtuous cycle where the mechanistic basis for the results and the breadth of the structural alerts continually improve over time to better predict activity of chemicals for which limited toxicity data exist.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9910356 | PMC |
http://dx.doi.org/10.1016/j.comtox.2018.08.003 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
It is crucial to comprehend protein misfolding and aggregation in the domains of biomedicine, pharmaceuticals, and proteins. Amyloid fibrils are formed when proteins misfold and assemble, resulting in the debilitating illness known as "amyloidosis". This work investigates lysozyme fibrillation with pluronics (F68 and F127).
View Article and Find Full Text PDFChem Rev
January 2025
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.
Recent breakthroughs in brain-inspired computing promise to address a wide range of problems from security to healthcare. However, the current strategy of implementing artificial intelligence algorithms using conventional silicon hardware is leading to unsustainable energy consumption. Neuromorphic hardware based on electronic devices mimicking biological systems is emerging as a low-energy alternative, although further progress requires materials that can mimic biological function while maintaining scalability and speed.
View Article and Find Full Text PDFElife
January 2025
Institute of Parasitology, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada.
Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
In this work, we propose a path integral Monte Carlo approach based on discretized continuous degrees of freedom and rejection-free Gibbs sampling. The ground state properties of a chain of planar rotors with dipole-dipole interactions are used to illustrate the approach. Energetic and structural properties are computed and compared to exact diagonalization and numerical matrix multiplication for N ≤ 3 to assess the systematic Trotter factorization error convergence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!