A study on and adsorption mechanism of ammonium nitrogen by modified corn straw biochar.

R Soc Open Sci

College of Resources and Environment, Jilin Agricultural University/Key Laboratory of Sustainable Utilization of Soil Resources in Commodity Grain Base of Jilin Province, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Changchun 130118, People's Republic of China.

Published: February 2023

Using corn stover as raw material, the adsorption mechanism of ammonium nitrogen by biochar prepared by different modification methods was studied. The biochar was characterized by Fourier transform infrared spectroscopy, surface-area analysis and scanning electron microscopy. The results showed that the adsorption of by different modified biochars confirmed the quasi-second-order kinetic equation ( > 0.95, ≤ 0.05), the adsorption isotherms of the Langmuir equation ( ≥ 0.96, ≤ 0.05). Δ < 0, Δ > 0 indicated that the adsorption of by different modified biochars was a spontaneous endothermic reaction. With the increase in adsorption temperature, the adsorption capacity of biochar to ammonium nitrogen increased gradually. The adsorption was monolayer adsorption and was controlled by a fast reaction. Both KOH and FeCl modified biochars significantly improved the adsorption capacity of , and the adsorption mechanism was different. The adsorption capacity of by FeCl modified biochars mainly increased the specific surface area and micropore volume. The adsorption of ammonium nitrogen after KOH modification primarily depended on the wealthy oxygen-containing functional groups. The adsorption effect of ammonium nitrogen modified by KOH was better than that of biochar modified by FeCl.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905994PMC
http://dx.doi.org/10.1098/rsos.221535DOI Listing

Publication Analysis

Top Keywords

ammonium nitrogen
20
modified biochars
16
adsorption
13
adsorption mechanism
12
adsorption capacity
12
mechanism ammonium
8
nitrogen modified
8
adsorption modified
8
≤ 005
8
fecl modified
8

Similar Publications

CO-driven ion exchange for ammonium recovery from source-separated urine.

Water Res

January 2025

Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China. Electronic address:

Nitrogen recovery from urine and CO utilization are both vital for achieving a circular economy and mitigating climate change. Divided engineering solutions have been proposed to address either problem, but there is still a lack of integrated technologies to simultaneously tackle the two tasks. We demonstrated CO-driven ion exchange for nitrogen recovery (CIXNR) from urine and evaluated the process in Malawi.

View Article and Find Full Text PDF

Cetylpyridinium chloride (CPC) is a quaternary ammonium antimicrobial used in numerous personal care products, human food, cosmetic products, and cleaning solutions. Yet, there is minimal published data on CPC effects on eukaryotes, immune signaling, and human health. Previously, it was shown that low-micromolar CPC inhibits rat mast cell function by inhibiting antigen (Ag)-stimulated Ca mobilization, microtubule polymerization, and degranulation.

View Article and Find Full Text PDF

Organic carbon can influence nitrogen removal during the anaerobic ammonia oxidation (anammox) process. Propionate, a common organic compound in pretreated wastewater, its impacts on mixotrophic anammox bacteria and the underlying mechanisms have not been fully elucidated. This study investigated the core metabolism and shift in behavior patterns of mixotrophic Candidatus Brocadia sapporoensis (AMXB) under long-term propionate exposure.

View Article and Find Full Text PDF

Dissimilatory nitrate reduction pathways drive high nitrous oxide emissions and nitrogen retention under the flash drought in the largest freshwater lake in China.

Water Res

December 2024

Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 211135, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang 332899, China. Electronic address:

Flash drought (FD) events induced by climate change may disrupt the normal hydrological regimes of floodplain lakes and affect the plant-microbe mediated dissimilatory nitrate reduction (DNR), i.e., denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA), thus having important consequences for nitrous oxide (NO) emissions and nitrogen (N) retention.

View Article and Find Full Text PDF

Upgrading wastewater treatment plants (WWTPs) is a global practice for achieving increasingly stringent nutrient discharge objectives set by governments to accommodate population growth and reduce surface water pollution. However, associated downstream improvements in nutrient conditions are difficult to determine in nearshore regions of large aquatic ecosystems due to complex biophysical processes. We conducted a nine-year water quality study and analyzed the data using linear mixed models (LMMs) within a Before-After-Control-Impact (BACI) framework to assess effects of an upgrade to the Duffin Creek Water Pollution Control Plant (DCWPCP) on surface water nutrient conditions and proliferation of nuisance benthic algae (Cladophora glomerata) in nearshore Lake Ontario.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!