Unlabelled: The lateral transport of heat above abrupt (sub-)metre-scale steps in land surface temperature influences the local surface energy balance. We present a novel experimental method to investigate the stratification and dynamics of the near-surface atmospheric layer over a heterogeneous land surface. Using a high-resolution thermal infrared camera pointing at synthetic screens, a sequence of frames is recorded. The screens are deployed upright and horizontally aligned with the prevailing wind direction. The screen's surface temperature serves as a proxy for the local air temperature. We developed a method to estimate near-surface two-dimensional wind fields at centimetre resolution from tracking the air temperature pattern on the screens. Wind field estimations are validated with near-surface three-dimensional short-path ultrasonic data. To demonstrate the capabilities of the screen method, we present results from a comprehensive field campaign at an alpine research site during patchy snow cover conditions. The measurements reveal an extremely heterogeneous near-surface atmospheric layer. Vertical profiles of horizontal and vertical wind reflect multiple layers of different static stability within above the surface. A dynamic, thin stable internal boundary layer (SIBL) develops above the leading edge of snow patches protecting the snow surface from warmer air above. During pronounced gusts, the warm air from aloft entrains into the SIBL and reaches down to the snow surface adding energy to the snow pack. Measured vertical turbulent sensible heat fluxes are shown to be consistent with air temperature and wind profiles obtained using the screen method and confirm its capabilities to investigate complex in situ near-surface heat exchange processes.
Supplementary Information: The online version contains supplementary material available at 10.1007/s10546-022-00752-3.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9902431 | PMC |
http://dx.doi.org/10.1007/s10546-022-00752-3 | DOI Listing |
JACS Au
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware DE 19716, United States.
Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).
View Article and Find Full Text PDFHeliyon
December 2024
Department of Hydraulic and Water Resource Engineering, Jimma University Institute of Technology, P.O. Box 378, Jimma, Ethiopia.
Understanding climate science is essential for effective policy development, adaptation, mitigation, and risk management. Given the inherent limitations in climate models, this study evaluates the performance of CORDEX Africa regional climate models to simulate precipitation and temperatures over the Melka-Wakena catchment. To accomplish this, the performance evaluation utilizes techniques such as multi-metric weighted ranking to select top-1 (best individual model), specific multi-model ensembles (top-N ensemble), multi-model ensemble, and average hybrid (top-N ensemble with MME) approaches at various temporal scales.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, Sharif University of Technology, Tehran, Iran.
Air pollution, a global health hazard, significantly impacts mortality, cardiovascular health, mental well-being, and overall human health. This study aimed to investigate the impact of air pollution and meteorological factors on cardiovascular mortality rates in Mashhad City, northeastern Iran in 2017-2020. We utilized a Random Forest (RF) model in this study.
View Article and Find Full Text PDFSci Rep
December 2024
School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang, People's Republic of China.
In this study, long-term and continuous monitoring of atmospheric radon concentration, temperature, air pressure, and humidity was conducted at China Jinping Underground Laboratory. The impacts of temperature, humidity, and air pressure on radon concentration in the experimental environment were specifically examined, along with the potential interactions among these factors. Moreover, Radon data were denoised using Singular Spectrum Analysis (SSA) to reveal factors that might influence changes in radon concentration.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biomedical Engineering, University of Los Andes, Bogotá, Colombia.
Agriculture 4.0 technologies continue to see low adoption among small and medium-sized farmers, primarily because these solutions often fail to account for the specific challenges of rural areas. In this work, we propose and implement a design methodology to develop a Precision Agriculture solution aimed at assisting farmers in managing water stress in Hass avocado crops.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!