Microbial food web (MFW) dominates the energy flow in oligotrophic tropical open ocean pelagic ecosystems. Understanding biogeographic patterns and driving mechanisms of key components of the MFW is one of the central topics in current marine ecology. Investigations were conducted along an 1,100-km horizontal gradient and in the full-water column vertical gradient of the oligotrophic tropical western Pacific Ocean. High-throughput sequencing and association networking methods were used to analyze the community structure and interspecies interactions of MFW. The structure of MFW significantly differed with depths, but not across horizontal gradients. Bacteria and microeukaryotes were interconnected and had more predominantly positive and negative linkages in the aphotic layers. Key components of MFW exhibited similar biogeographic patterns and driving mechanisms. Geographic distance exerted minimal effects on the distribution patterns of the microbial food web, while environmental factors played more important roles, especially for temperature and inorganic nutrients. Stochastic processes were more important in the microbial food webs of the 5-200  m layer than the >500  m layer, and drift explained the majority of stochastic processes. Moreover, only a weak but not significant driving force for North Equatorial Current on the east-west connectivity of the microbial food web was found in the upper layers. This knowledge is a critical fundamental data for future planning of marine protected areas targeting the protection of tuna fishing in the western Pacific Ocean.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9909095PMC
http://dx.doi.org/10.3389/fmicb.2023.1098264DOI Listing

Publication Analysis

Top Keywords

microbial food
20
biogeographic patterns
12
patterns driving
12
driving mechanisms
12
oligotrophic tropical
12
western pacific
12
pacific ocean
12
food web
12
food webs
8
tropical western
8

Similar Publications

Biomass-Based Microbial Protein Production: A Review of Processing and Properties.

Front Biosci (Elite Ed)

December 2024

Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.

A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.

View Article and Find Full Text PDF

Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a global problem and is especially threatening for low-and-middle income countries like Bangladesh. The COSTAR (Community-led Solutions to Antimicrobial Resistance) project includes a Randomised Control Trial (RCT) which aims to evaluate the effectiveness of the Community Dialog Approach (CDA) to improve levels of correct and appropriate knowledge and reported practice about antibiotics, antibiotic use, and antibiotic resistance (ABR) from a One Health perspective, among adult community members in 5 selected sub-districts of Cumilla. The CDA is a community engagement approach involving community members in active discussions also known as Community Dialogs (CD), run by local facilitators.

View Article and Find Full Text PDF

Douchiba (DCB) is a nutritious food rich in various functional components such as Tetramethylpyrazine (TTMP), and the strain fermentation is crucial for enhancing its quality. This work utilized S2-2 and S6-J1 with high TTMP production for fermentation of soybeans to optimize the pre-fermentation process and to evaluate the flavor quality of mature DCB. The concentration of TTMP in DCB fermented by mixed microbial (MG) was 2.

View Article and Find Full Text PDF

The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!