A brain tumor in the left hemisphere can decrease language laterality as assessed with fMRI. However, it remains unclear whether or not this decreased language laterality is associated with a structural reshaping of the grey matter, particularly within the language network. Here, we examine if the disruption of language hubs exclusively affects macrostructural properties of contralateral homologues (as suggested by previous research), or whether it affects both hemispheres. This study uses voxel-based morphometry applied to high-resolution MR T1-weighted MPRAGE images from 31 adult patients left-dominant for language. Eighteen patients had brain tumors in the left hemisphere, and 13 had tumors in the right hemisphere. A cohort of 71 healthy individuals matched on age and sex was used as a baseline. We defined 10 ROIs per hemisphere known to subserve language function. Two separate repeated-measures ANOVAs were conducted with the volume per region as the dependent variables. For the patients, tumor lateralization (right versus left) served as a between-subject factor. The current study demonstrated that the presence of a brain tumor generates a global volumetric change affecting left language regions and their contralateral homologues. These changes are mediated by the lateralization of the lesion. Our findings suggest that compensatory functional mechanisms are supported by the rearrangement of the grey matter, although future longitudinal research should determine the temporal course of such changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9915653 | PMC |
http://dx.doi.org/10.1101/2023.02.02.526219 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!